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Abstract

We consider a model of crime with rational Bayesian Jurors. We find that if jurors are not perfectly
informed, even when there is no limit to the size of the punishment that can be imposed, it is not
possible to deter all crime. There is a finite lower bound on the crime rate which results from the
difficulties in achieving a conviction with imperfect evidence and very low crime rates. Crime can
not be reduced below this rate by increasing the penalty, but the lower bound can be decreased by
improving the quality of evidence presented to jurors, or by increasing the threshold of evidence
necessary for prosecution.
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1 Introduction

Despite the recent decline in crime, a great many Americans (sometimes over 50 percent) view
crime as the most important problem facing the United States (National Center for Policy Analysis
1999). Recent research has estimated that the social costs of crime are in excess of $1 trillion
(Anderson 1999), suggesting that such concern is quite reasonable. While, beginning with Gary
Becker’s (1968) seminal contribution, economic theory has made significant progress in understand-
ing optimal crime control policies, it has yet to provide a satisfactory explanation for why society
continues to be burdened by high crime rates and the tremendous costs they impose.

The most simple economic models of crime suggest that a rate of punishment can be set that
would cheaply deter almost all inefficient crime. While acknowledging that detecting crime is
costly, Becker argues that larger punishments can substitute for large probabilities of detection.
Many previous papers have relaxed various assumptions of the Becker model in order to explain
various features of crime and punishment in society. Much of this literature aims to explain why we
do not see maximal punishments and very small detection rates (Polinsky and Shavell 1979; Posner
1985; Kaplow 1990; Malik 1990; Miceli 1990; Miceli 1991; Polinsky and Shavell 2000; Garoupa
2001), as Becker’s theory suggests is optimal, and why fines do not play the large role in punishing
criminals as Becker argues they should (Polinsky and Shavell 1984; Chu and Jiang 1993; Levitt
1997). See Garoupa (1997) and Polinsky and Shavell (2000) for excellent surveys of this literature.

While these papers have all added many valuable insights to our understanding of optimal crime
control policies, as Reinganum and Wilde (1986) have pointed out, the implication of most of these
models that the optimal crime rate should be very small is inconsistent with observed crime rates.
In fact, most of the arguments as to why punishments should be strictly less than maximal depend
on the existence of efficient crime in equilibrium (Reinganum and Wilde 1986). In his model of
the optimal use of non-monetary sanctions, Shavell (1987) obtains a positive equilibrium crime
rate (in his terminology, undesirable acts are committed) when sanctions are costly, some criminal
activity is efficient, and courts cannot perfectly distinguish between efficient and inefficient crime.
While this is undoubtedly explains why we do not completely deter some criminal acts, it is a
less satisfactory explanation for serious violent crimes. For most serious crimes (e.g., rape) it is
hard to believe that anything other than a vanishingly small percentage of it is efficient. In fact,
Posner (1985, p.1195) argues that one can ”derive the basic criminal prohibitions from the concept

of efficiency;...what is forbidden is a class of inefficient acts.” Furthermore, it implies a substantial



portion of existing crime is efficient (otherwise, why not just sacrifice some efficient crime to deter
inefficient crime and save on punishment costs). This is inconsistent with the tremendous social
costs of crime discussed above.

Many authors also get positive equilibrium crime by assuming an exogenous upper bound on the
magnitude of punishment. But, as Reinganum and Wilde (1986, p.3) point out, ”the notion of an
exogenous technological constraint on the extent of feasible sanctions seems inappropriate: we want
to explain limited sanctions, not assume them. We do not inflict cruel and unusual punishment,
but that is a statement about preferences, not technology.” Other refinements have noted that,
if there is some probability of legal error, infinite punishments (as long as they are not socially
costless) that deter all crime will not be optimal since they would only be imposed on the innocent.
While this argument does explain why crime exists in equilibrium, it also suggests that a large
proportion of current convicts are innocent, something we are reluctant to believe. However this
argument does capture the insight that as deterrence becomes more effective, a greater percentage
of defendants are likely to be innocent.

The degree of social concern about crime suggests that few, if any, people believe that most
crime is socially efficient, or that most convicts are innocent. Furthermore it suggests that society
would support increased punishments if they were effective in deterring crime. This does not mean,
however, that the economic model of crime is incapabable of explaining why we must face the large
social costs associated with crime that we face today. We show that by introducing one more
rational actor, juries, into the economic model of crime, we can explain why it is impossible to
deter inefficient crime, even if all crime is both rational and inefficient. Furthermore, we obtain
this result without the implication that a large fraction of current convicts must be innocent.

We show that if a jury convicts a defendant if and only if its posterior probability that the
defendant is guilty exceeds some given level, then the accuracy of a jury’s signal that a crime
occurred provides a lower bound on the feasible crime rate. That is, so long as there is no signal
that guarantees a crime occurred with probability one, it is impossible to eliminate crime, even if
the punishments are infinitely costly to convicted defendants. Imagine an equilibrium with zero
crime but imperfect signals of guilt. If the jury believes that it is never rational for anyone to
commit a crime (because the expected punishment is so large), then without a perfect signal that a
crime occurred it will never convict a defendant (the posterior probability of guilt is zero whenever
the prior probability is zero unless the signal is perfect). But if no one is ever convicted, then

crime is rational, undermining this equilibrium. Imperfect signals create a lower bound on the



crime rate, even with infinite punishments and fully rational criminals.

One consequence of this relationship is that increasing the magnitude of punishment has a very
small effect on the crime rate when the punishment is already quite large. While this effect is always
positive when the threshold probability of guilt for conviction is independent of the punishment
(so long as there is no atom at the top of the signal distribution), if this threshold is increasing in
the magnitude of the punishment, as suggested by Andreoni (1991), then larger punishments can
actually increase the crime rate.

An additional implication is that the minimum possible crime rate is determined by the accu-
racy of the most informative signal that the defendant is guilty. This suggests that improving the
investigation of crime can reduce the crime rate more than increasing punishments. Specifically,
reducing the likelihood that innocent defendants receive the most informative signal of guilt can
be a most effective way of reducing the minimum possible crime rate. This suggests that credi-
ble prevention of prosecutorial misconduct is a particularly important element in the fight against
crime, because the possibility of a coerced confession or planted physical evidence casts doubt on
the most reliable signals of guilt.

All of these results rely on the assumption that there is at least some uncertainty in a trial
about whether or not a crime has occurred, not just about who the guilty party is. While in
some criminal cases the primary question is one of identity, in many cases the primary question is
whether there was a crime. In drunk driving cases, for example, (or almost any driving related
crime for that matter) the important uncertainty is typically over whether a crime was committed
(e.g., was the driver drunk), rather than the identity of the driver. The same is typically true for
fraud or other white collar crimes. Any claim of self-defense or insanity is an argument that no
crime occurred. Rape defendants often make the argument no crime occurred because there was
consent. A defendant in a theft cases can argue that the ”stolen” item was a gift or belonged to the
defendant for some other reason. Anytime arguments such as this can be made, and they cannot
be proven wrong with probability one, the results in this paper apply: infinitely large punishments
cannot eliminate crime (even when all potential criminals are rational), larger punishments reduce
the probability of conviction and these punishments are imposed with positive probability. There
are some other papers whose models do explain the existence of a substantial level of crime in
equilibrium. Reinganum and Wilde’s (1986) explanation is that the government lacks commitment
power: punishment is costly and is only imposed after a crime has been committed, at which point

it is too late to deter that crime. As a result, while it is optimal to threaten large punishments, it is



not optimal to actually impose them ex post. Because criminals know this, threatening very large
punishments will not deter all crime. Andreoni’s (1991) paper also suggests a possible explanation
for why the deterrent effect of punishment may be bounded. In his model, the larger the punishment
the more confident the jury must be of the defendant’s guillt for it to vote to convict. The main
result is that a finite punishment may maximize deterrence. While both Andreoni’s paper and our
own focus on the role of jury decision-making, both the results and what drives them are quite
different. Andreoni’s paper shows that non-maximal punishments could be optimal because jury
preferences may lead to a decreasing relationship between punishment magnitude and probability
of conviction. In our paper, we find a limit to the effectiveness of deterrence, but what drives our
results is simply Bayesian inference. We do not need to assume that juries are exogenously less likely
to convict when punishment is increased. In fact, we simply assume that juries follow a simple fixed
legal standard, vote to convict if and only if the probability of guilt is at least P. Thus, we derive a
positive equilibrium crime rate by only assuming that jurors are rational Bayesian updaters. It is
also this paradigm that generates our results about the relative importance of criminal investigation
and prosecutorial misconduct, results that are not present in models based on jury preferences or
imperfect commitment.

Section two describes the model and contains the main results of the paper. Section three

discusses possible extenstions and concludes.

2 Model

We asssume that there are a continuum of potential criminals. Each potential criminal receives a
benefit b (a random variable) from committing a crime. We assume b € B C R and let h and H be,
respectively, the probability density function and cumulative distribution function for 6. A trial
occurs with a probability gy € (0,1) if a crime occurs, and with probability gy € (0,1) if no crime
has occured. In trials where a crime has actually occured, the likelihood that the prosecution has
chosen the correct suspect is m € (0,1).

When a defendant is charged with a crime and brought to trial, the jury receives a signal of the
defendant’s guilt t € T C R. This signal encompasses all the information revealed during the trial.
The probability density function and cumulative distribution function for the signal are respectively
given by gg and Gg if the defendant is guilty and g; and Gy if she is innocent. Without loss of

ga(t)

generality we assume Ok increasing in ¢, so a higher signal is a stronger signal of guilt. We



also define a normalized signal s € S C [0, 1] implicitly by the equationgf—((tt)) = 1%;. Thus, s is the
posterior probability of guilt if the prior is one-half. For most of the following analysis, we will
work with the normalized signal.

We model jurors as rational Bayesian decision-makers. We abstract away from any issues
of aggregation of information or heterogeneity in jurors and assume that jurors have identical
information and preferences, and thus act monolithically. At the trial, they observe the signal ¢,
and vote to convict if the defendant’s posterior probability of guilt exceeds some threshold level,
P. If the posterior probability of guilt is less than P then the jury acquits the defendant. If the
posterior probability is exactly P, then the jury may vote to convict or acquit. The threshold P
can either be thought of as determined by the jury’s balancing of the costs of acquiting a guilty
defendant and the costs of convicting an innocent one or as the level prescribed by law (P would
then correspond to ”reasonable doubt”).

Because jurors are rational Bayesians, we will require the prior probability of guilt to be consis-
tent with the crime rate. The prior probability that an individual on trial is guilty will be referred

to as u, and it is a function of the crime rate and the variables qy, qn, and m. If the crime rate is

C, so the likelihood there has been no crime is 1 — C', the prior probability of guilt is as follows.

mqyC
p= (1)
avC +qn(1 = C)
. .. . . d
Differentiating p with respect to C, we obtain & = %. Note that as long as

qy > 0 and gy > 0, the prior p is increasing in the crime rate and is zero when the crime rate is
Zero.

The probability density functions and cumulative distribution functions for the normalized
signal are given by fg and Fg if the defendant is guilty and f; and F7 if she is innocent. Using the
normalized signal, the posterior probability, p, that a defendant with a signal s is guilty is given

by:

_ s
= s = 9) ®

Given the prior probability u, a jury will convict a defendant if and only if the defendant’s

signal of guilt is large enough. This cutoff value for conviction is given by setting the right hand



side of (2) equal to P and solving for s. We call this cutoff value s.

- P(1—p)
W BT T u ) “

Clearly, s is decreasing in u, meaning that with a higher prior of guilt, the jury requires a weaker
signal to convict. Since p is increasing in the crime rate, a lower crime rate implies that the jury
requires a stronger signal to convict. As the crime rate and the prior probability go to zero, the
signal required for conviction goes to one. Now, let sy = Sup{s € S}. From (3 ), it is easy to
see that the lowest possible prior probability that is consistent with a jury sometimes convicting a
defendant is when the jury convicts only if it receives the strongest signal of guilt, s)s. The lower

bound on the prior probability is then given by solving (3) for pu with § = sy.

_ P(1—sp)
M P =su) +sm(1—P) W

This minimum prior corresponds to a lower bound on the crime rate, below which it is impossible
for a rational jury to achieve reasonable doubt. We can compute this by inverting (1) to obtain
crime rate as a function of the prior, and setting the prior equal to the right hand side of (4) for

an arbitary s.

A gN
C(s) = 5
(=) may 5355 + (m — 1)gy + qn (5)

This is decreasing in s, so the minimum crime rate consistent with a conviction by a rational

jury is found by setting s = sjy.

qN
Cu = = (6)
may 22— 15F + (m — 1)y + qn

Now consider an individual’s incentive to commit a crime. A person commits a crime if the
benefit, b, exceeds the expected cost from being convicted and punished by an amount z. Notice
that in our model, the possibility of wrongful conviction has no direct impact on an individual’s
decision to commit a crime. We believe this is realistic for three reasons. First, even if deciding not
to commit a given crime increases the probability that this person will be convicted of a crime for
which she is innocent, this probability is, in most cases, vanishingly small. Even if innocent people
get convicted quite often, she is just one of a very large number of innocent people who could be

wronfully convicted. Second, and more importantly, as was pointed out by Schrag and Scotchmer



(1994), crime opportunities can be either exclusive or non-exclusive. If a crime opportunity (or
the benefit from that crime) is exclusive, then if one does not commit this crime, no one will.
Not committing the crime does not increase one’s probability of being wrongfully convicted of a
crime. Thus, in the real world this assumption is approximately correct for non-exclusive crimes
and exactly correct for exclusive crimes. Third, assuming away any direct effect on the crime rate
from the possibility of wrongful convictions highlights the result in Proposition 2 that reducing the
risk of wrongful convictions will, in fact, indirectly reduce the crime rate.

According to our model, the probability of being convicted of a crime is given by mqy (1—Fg(5)).
Our assumption is that an individual commits a crime if and only if b > zmqy (1 — Fg(8)). Given
this decision rule, the probability that an individual’s benefit from crime is large enough to induce
her to commit a crime is 1 — H(zmgqy (1 — Fg(8))). If juries have rational expectations, this crime
rate must be consistent with the prior probability of guilt that is consistent with the cutoff value
of the signal necessary for conviction, 5. That is:

L= H(zmay (1 - Fg(3))) = C(8) = ———5p— (7)

may 25355 + (m — L)gy +qn

These last two equalities are the basis for the following proposition.

Proposition 1. (a) The greater the punishment for crime, the lower is the probability of
conviction. (b) If fa contains an atom at sps then there exists a Z < oo , such that for all z > Z,
increasing the punishment, z, has no effect on the crime rate C. (c) If spy < 1 (there is no signal
that a guilty person will receive with positive probability that an innocent person will never receive),

then the minimum possible crime rate is strictly positive no matter how large the punishment.

Proof: (a) Totally differentiate (7) with respect to z and solve for ds/dz:

d3/dz = >0

P} + 2fa(3)h(2(1 - Fa(3)) —

mqy (1 = Fa(3)h(z(1 — F&(3))
(gv R+qn(1 = R))?{P(1 - P)/[P(1-35)+35(1 -

Since the probability of conviction is 1 — F(S), the result follows.
(b) If fi has an atom at sps, then 1 — Fg(sy) = fa(sm) > 0. Hence, there is a finite Z such

that:

qN
1— H(Zmqy fa(sm)) = S — 8
( (sa0)) may 72 12F + (m — D)gy +qn (®)

1—sp

The right hand side of (8) is the minimum crime rate consistent with any convictions. Hence,



increasing z above Z cannot decrease the right hand side further. By this equality, then, the
crime rate cannot fall below this level. The equality can only be maintained by decreasing the
probability of conviction for z > Z. This can occur for a fixed fq if jurors play a mixed conviction
strategy when observing sps. That is, the larger is z > Z, the lower is the probability of conviction
when jurors observe sp;.  Thus, for z > Z, the argument in the H function on the left hand
side of (7) becomes zqy fa(sur, 2), where fa(s,z) = fa(s) for s < sy and fg(sur, 2) satisfies

(ZmQY]?G(SMa z)) = P(l_fj\ffl);zx)(l_]:) .

(c) The right hand of (6) is strictly positive for any sj; < 1 as long as gy > 0. Since this is the
minimum of the right hand side of ( 7), it is also the minimum of the left hand side. Thus, there
is a strictly positive probability that an individual will find it optimal to commit a crime, making

the minimum possible crime rate positive. Q.E.D.

Part (a) of the Proposition says that increases in punishment will have a smaller effect on the
crime rate than in the standard model without juries. In the standard model, an x percent increase
in the punishment magnitude increased the required benefit from crime by the marginal criminal by
x percent. In our model, the required marginal benefit increases by less than x percent because the
likelihood of conviction falls when the punishment increases. Since the required benefit increases
less, the deterrent effect from increased punishment is smaller than when juries are ignored. This
result is similar to that of Andreoini (1991), but, unlike Andreoni, we get this result while holding
the conviction standard, P, constant.

As part (b) indicates, when P is held constant, we do not get Andreoini’s result that larger
punishments can increase the crime rate. If there is an atom at the top of the signal distribution,
however, it will be the case that there is a finite punishment that yields the minimum crime rate.
Punishment levels above that decrease the conviction rate so that the expected punishment is held
constant. If there is no atom at the top of the signal distribution, then an infinite punishment is
necessary to push the crime rate to its minimum level. Any finite punishment will lead to a signal
cutoff for conviction that is strictly less than the maximum signal, § < sps, so that (7) is satisfied.

Part (c) explains why the policy of setting punishments so large that all crime is deterred (and so
the cost of punishment never becomes an issue) is not feasible. There can never be an equilibrium
with no crime because then the jury’s prior precludes conviction (unless it can receive a perfect
signal of guilt). In a rational model of crime, if crime is never rational and juries know this then,

absent a perfect signal, the evidence can never be strong enough to warrant conviction. Since some



crime is inevitable in equilibrium, the cost of punishment matters. So, if this cost is increasing in
the magnitude, finite punishment is optimal. Note that we do not preclude a finite upper bound
on b, so our results do not depend the on the presence of criminals whom it is impossible to deter
from crime.

As the following proposition demonstrates, this model also shows that protections against
wrongful conviction play an important role in deterring crime.

Proposition 2. Say the original normalized signal required for conviction is S corresponding

~ ~

*';G—(%) = lig Reducing the likelihood that the jury receives a signal t'
, _

for all t' in a neighborhood of t when the defendant is innocent will reduce the crime rate.

to the original signal t, i.e.,

Proof: The crime rate is determined by 1 — H(zqy (1 — Gg(%))) , the probability that a person
finds it optimal to commit a crime given the punishment, z, and the probability of conviction,
1- Gg(ﬂ. Reducing the probability that an innocent person receives a signal ¢ will reduce the
crime rate if and only if it leads to a reduction in ¢. Of course tis determined by the analogue of

equation (7):

1 — H(zmay (1 - Ga(7)) = N 9)

We use the parameter A to capture the accuracy of the signal. In particular, we assume that
an increase in A corresponds to a reduction in g7(Z), that is %@‘) < 0. The right side of (9) is
clearly increasing in gj(f), furthermore the left side is increasing in tand the right side is decreasing
int (by our MLRP assumption for G). Therefore, reducing g[(f) causes the left side to be greater

than the right. To restore equality we must reduce ¢. This decreases the crime rate, represented

by the left side of the equation. Q.E.D.

While many authors have made the point that reducing the probability of wrongful convictions
can increase deterrence, this was under the implicit assumption that crime opportunities are non-
exclusive. Thus, the probability of wrongful convictions represent a cost to not committing a
crime. Proposition 2 shows that even without this effect reducing the probability of wronful
convictions reduces the crime rate because it increases the probability that a jury will convict a
guilty defendant. This result is somewhat related to the result in Schrag and Scotchmer (1994)
that when police are prejudiced against habitual criminals (in our context, they are more likely to
receive high signals), juries will require higher signals to convict, inducing them to commit more

crimes.

Proposition 2 shows that increasing the quality of evidence presented at trial will reduce the



crime rate. In addition to increasing the quality of evidence, however, it may also be possible
for the prosecution to improve the process by which it chooses when to have a trial and which
defendant to try. The next proposition shows that any unambiguous improvement in this process

will also decrease the crime rate.

Proposition 3. Increasing qy, the likelihood of a trial when there is a crime, decreasing qn,
the likelihood of a trial if there is mo crime or increasing m, the likelihood of trying the correct

defendant, decreases the crime rate.

Proof: Differentiating (7) we see that the right side is increasing in gy, decreasing in gy and
decreasing in m. The left side is decreasing in m and ¢y and does not depend directly on gy .
Increasing qn increases only the right side of the equation, implying that s must increase in order
for the equation to be satisfied, which requires an increase in the crime rate on the left side of the
equation. Increasing gy or m decreases both sides of the equation. Let 3 be the new value at
which the equation is satisfied. Notice that the right hand side is decreasing in § and the left hand
side is increasing in 5. Say § is enough greater than § that the crime rate increases. This means
the left hand side must increase. But, since § increases and gy or m increases, the right hand side
must decrease. This contradiction implies that (7) must be satisfied at a lower crime rate than
before. Q.E.D.

The results in proposition 3 imply that an improvement in the process by which the prosecution
chooses when to prosecute, or an improvement in the decision of which individual to prosecute,
will decrease the crime rate. Unlike the decrease in crime from increasing punishments, the effects
of changing these parameters do not rapidly reach an asymptote. This may suggest that once
punishments are sufficiently severe, resources devoted to improving the prosecutorial process would
have a greater impact on crime than resourse devoted to increasing the severity of the punishment.

According to Proposition 3, decreasing qn decreases crime, while decreasing gy increases crime.
In practice it might be very difficult to prosecute less innocent defendants without prosecuting less
guilty defendants as well, that is to say a decrease in ¢y may always entail some decrease in gy .
Therefore, it is worthwhile to examine the trade off inherent in more or less agressive prosecution.

We consider how much of a decrease in qn would be enough to make a decrease in ¢y worthwhile.
The following proposition provides our results regarding this trade off.
Proposition 4. Consider two pairs of parameters {qn,qv} and {¢N, ¢y} If sy < 1 and

ZTN < 3—1;’ then there is some z such that if z > Z crime is lower with {¢, ¢y} than with {qn,qy}
Y
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Proof: Because both sides of (7) must be positive (the equilibrium crime rate cannot be
zero), lim, oo Fa(S(2)) = 1. Likewise lim, .o Fg(§'(2)) = 1. This implies lim,_,o Fg(5(2)) =
lim, o Fg(5(2)) = Fa(sy) -

By (7), this implies that

a
. ~ qN ay
lim C(3(z)) = - = — (10)
#7700 may 72 AZE + (m = D)y + v myR 5P 4 (m 1) + &
and
Iy
. —~ Q§V @ (11)
lim C(5'(2)) = P = 7
Feo may 7=+ (m—1)gy + dy myi P (m—1)+ ?Tf;f
Since mlff‘S/IM% + (m — 1) > O(otherwise the crime rate is greater than one), this implies

lim, o C(52)) > lim,_,o C(5'(2)),80 with great enough punishment any decrease in (9# will de-
crease the crime rate. Q.E.D.

The results of proposition 4 show that if it is possible to sufficiently increase the punishment,
crime can be minimized by minimizing %. If we believe that reducing the agressiveness in
prosecution would result in proportionately less prosecutions when there has actually not been a
crime, this would imply that juries will be more likely to convict. In situations where it is difficult
to obtain convictions because crime is near the lower bound, the increases in the likelihood of
conviction given trial will outweight the reduction in the likelihood of a trial, and thus less agressive
prosecution would actually reduce the crime rate. In essence, this proposition suggests that rather
than aiming for more prosecutions, an effective anti-crime strategy would focus prosecutions on

suspects who are most likely to be guilty, and push for severe punishments for those suspects.

3 Conclusion and Extensions

One simplification present in our model is that we assume jurors do not receive an independent
signal of the likelihood that a crime actually occured. However, if juries did receive such a signal,
as long as this signal is never perfect, the results of our model will still hold. In the new model, the
posterior belief of the jury would be a function of the signal of the defendant’s guilt as well as the
signal of whether there had actually been a crime. The maximum probability that the jury would
place on the defendant’s guilt would occur when the jury receives the strongest possible signal that

a crime occurred and the strongest signal of the defendant’s guilt. This posterior probability would
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still be an increasing function of the crime rate. Since this probability would go to zero as the
crime rate went to zero, this would imply that, as before, there is a minimum crime rate that is
consistent with conviction. All the other results would be qualitatively similar. Another possible
extension to our model would be to formally model the prosecution and the grand jury process.
For example, we could assume that the prosecution received an independent signal of the suspects
guilt, and could choose to prosecute only when their independent signal exceeded some cut-off
level. Raising this cut-off level would have the effect of decreasing both gy and gy ,but decreasing
gn proportionately more. One could argue about whether or not the prosecution could credibly
raise this cut-off level, since the prosecution usually has an incentive to prosecute and convict as
many people as possible. However, even if the prosecution could credibly commit to a cut-off level,
as long as there is an upper bound on the strength of the prosecution signal, our qualitative results
would be unchanged. Even if it was believed that the prosecution only prosecuted suspect after
receiving the strongest signal of guilt, as long signal could not be perfect, the jury’s prior would
still go to zero as the crime rate went to zero and there would be a positive lower bound on crime.
In short we expect there will be a lower bound on the crime rate in any model where there is no
perfect signal that a crime actually occurred.

It would be relatively easy to combine our model with Andreoni’s (1991), where a jury requires
a higher standard of proof when a punishment is more severe. Under our assumption that the
quality of information presented to the jury is bounded, we would find that there was a punishment
level associated with a minimum crime rate. Any increase in punishment above that level would
require a standard of reasonable doubt that could not be reached or surpassed unless the crime rate
increased, suggesting that crime rate plotted against punsihment would have a U-shaped graph.
In this case, allowing for Bayesian juries would actually suggest that the crime rate increased with
punishment more slowly than in the orignal Andreoni paper. The Bayesian jury will recognize
that as they raise their reasonable doubt threshold, the crime rate will increase, and thus they
will increase their priors on the defendants guilt, partially mitigating the increase in crime that
Andreoni predicts.

Our model has some clear empirical predictions, which may be worthwhile to test. Specifically,
our model suggests that increases in punishment severity are likely to result in fewer convictions,
but are likely to have only a small effect on the actual crime rate. These predictions are in line with
Andreoni’s (1995) re-examination of the data from Ehrlich’s 1973 study. Our model also predicts

that the likelihood of conviction conditional on trial should be positively related to the crime rate,
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but conditional on the crime rate, the likelihood of conviction should be negatively related to
the number of trials. Testing this relationship could be the subject of a future empirical study.
However any cross-sectional or time series estimation of this relationship would have to account for
differences in propensity to commit crime as well as differences in standards of reasonable doubt.
We have shown that when juries are rational Bayesians, increasing the punishment for crimes
will have diminishing effects unless the jury can be perfectly sure that a crime occurred. In fact, the
crime rate asymptotically approaches a strictly positive lower bound as the punishment approaches
infinity. Our ability to deter crime is not limited so much by our inability or unwillingness to impose
severe penalties, but rather by limitations on our ability to prove the guilt of any defendant. This
suggests that rather than increasing punishment, improving the investigation of crime may be a
more effective way to lower the crime rate. Furthermore, the results of this paper suggest that
agressive prosecution can be couterproductive and that prosecutorial misconduct can be particularly
harmful. The possibility of prosecutorial misconduct injects reasonable doubt into the beliefs of
juries, and undermines the possibility of conviction with low crime rates. In short, accounting
for rational Bayesian jurors shows that extreme punishments, even if they are feasible and socially

acceptable, may be unable to solve our problems with crime.
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