Artificial Intelligence and Climate Change

Amy L. Stein†

As artificial intelligence (AI) continues to embed itself in our daily lives, many focus on the threats it poses to privacy, security, due process, and democracy itself. But beyond these legitimate concerns, AI promises to optimize activities, increase efficiency, and enhance the accuracy and efficacy of the many aspects of society relying on predictions and likelihoods. In short, its most promising applications may come, not from uses affecting civil liberties and the social fabric of our society, but from those particularly complex technical problems lying beyond our ready human capacity. Climate change is one such complex problem, requiring fundamental changes to our transportation, agricultural, building, and energy sectors. This Article argues for the enhanced use of AI to address climate change, using the energy sector to exemplify its potential promise and pitfalls. The Article then analyzes critical policy tradeoffs that may be associated with an increased use of AI and argues for its disciplined use in a way that minimizes its limitations while harnessing its benefits to reduce greenhouse-gas emissions.

Introduction ... 891
I. Climate Change and Artificial Intelligence ... 894
 A. Climate Change ….. 894
 B. Artificial Intelligence and Climate.. 895
 1. Artificial Intelligence ... 895
 2. Artificial Intelligence and Climate.. 898
II. Climate Artificial Intelligence and the Electric-Power Sector……………….. 900
 A. Artificial Intelligence for Optimizing Grid Assets ….................................... 901
 B. Artificial Intelligence for Increasing Electric-Grid Efficiency ……………… 906
 C. Artificial Intelligence for Electric-Grid Reliability and Resiliency ………… 909
III. Key Tradeoffs for Artificial Intelligence and Climate……………………… 916
 A. Environmental Impacts…………………………………………………………… 917
 B. Data Privacy………………………………………………………………………… 923
 C. Investment and Procurement……………………………………………………… 928
 1. Utility Investing in Artificial Intelligence……………………………………….. 928
 2. Nonutility Private Investment in Artificial Intelligence………………… 934

† Professor of Law and University Term Professor, University of Florida Levin College of Law. I am grateful to Dr. Sean Meyn, Dr. David Rolnick, Dr. Prabir Barooah, Priya Donti, Danny Sokol, and Ryan Calo for their valuable feedback, and to my tireless research assistants, Shannon Boylan, Courtney Meyer, and Tatiana Raevsky for their outstanding assistance.
Introduction

Headlines claim that robots will take our jobs\(^1\) and that drones may use machine learning to teach themselves to launch an independent attack.\(^2\) Scholars have documented more immediate concerns about the bias surrounding the use of algorithms for criminal sentencing\(^3\) and facial recognition programs.\(^4\) Together, each of these scenarios implicates various forms of artificial intelligence (AI). An amorphous term that has moved from obscurity to commonplace as of late, AI here refers to “a set of techniques aimed at approximating some aspect of human or animal cognition using machines.”\(^5\) There are many different forms of AI. The most popular form is machine learning, a technology used to make predictions that functions best when using massive amounts of data and computing capacity.\(^6\) AI’s tentacles have pervaded many aspects of society, from more mundane uses in Google

searches to more sophisticated uses in criminal-bail sentencing, autonomous vehicles, e-commerce, digital advertising, and medicine. Like most technological innovations, these techniques have the capacity for both beneficial and detrimental outcomes.

This Article, prepared in connection with the Yale Journal on Regulation’s symposium on Regulating the Technological Frontier, attempts to strike a more optimistic tone for AI. It strives to remind its readers that some of the problems plaguing society today are in need of technological assistance, that there are some applications that are less controversial (predicting weather patterns) than others (predicting recidivism), and that AI can be valuable despite its imperfections.

Specifically, it explores climate change, a massive problem in and of itself, and one area ripe for the use of more AI. As one federal circuit court has found, “[a]bsent some action, the destabilizing climate will bury cities, spawn life-threatening natural disasters, and jeopardize critical food and water supplies.” Despite overwhelming and repeated scientific evidence of the need to reduce our global carbon emissions, as a result of higher global energy consumption, carbon emissions “rose 1.7% last year [in 2018] and hit a new record.” Only during a global pandemic and economy shutdown did the United States achieve temporary global carbon reductions on par with the 8% experts predict is needed annually to achieve climate-change targets.

11. For a thorough analysis of AI’s potential application for various climate-change issues by experts in machine learning, see David Rolnick et al., Tackling Climate Change with Machine Learning (June 10, 2019), https://arxiv.org/pdf/1906.05433.pdf [https://perma.cc/ADQ2-6DR7].
12. Juliana v. United States, 947 F.3d 1159, 1166 (9th Cir. 2020).
Artificial Intelligence and Climate Change

Article does not suggest that AI can solve climate change, but it does advocate for its use to whittle away at some of the low-hanging fruit contributing to the problem of pervasive greenhouse-gas (GHG) emissions.

Most experts agree that focusing on just four areas can have substantial impacts on decarbonizing society: electricity, transportation, agriculture, and buildings. This Article tackles only one: electricity. It is not intended to be an exhaustive evaluation of AI’s applications in the electric industry. But this Article highlights a few examples of AI’s possible use to reduce carbon emissions in the electric-power sector and presents a number of policy considerations as more AI and climate-related proposals come to light. Part I provides a brief primer on AI and climate, and Part II explores some of the ways that AI can be used to reduce GHG emissions in the electric power sector. Part III then analyzes some of the policy tradeoffs associated with expanded use of AI in the electricity sector, highlighting ways to temper AI’s limitations.

[https://perma.cc/A8CB-U4RU]; see also Corinne Le Quere, Temporary Reduction in Emissions During Confinement, NATURE (May 2020), https://www.nature.com/articles/s41558-020-0797-x [https://perma.cc/CX2U-9XXW] (predicting the reduction in carbon-dioxide emissions due to COVID-19 shutdowns).

17. Globally, agriculture accounts for approximately twenty-four percent of GHG emissions, with methane emissions playing a significant role. See Global Greenhouse Gas Emissions Data, supra note 15. AI could improve agricultural efficiency by enabling “precision agriculture” at scale, helping farmers predict when and what to plant, allowing for soil regeneration and reducing the need for fertilizers. See WORLD ECON. FORUM, HARNESSING ARTIFICIAL INTELLIGENCE FOR THE EARTH 13 (Jan. 2018) [hereinafter HARNESSING AI], http://www3.weforum.org/docs/Harnessing_Artificial_Intelligence_for_the_Earth_report_2018.pdf [https://perma.cc/2VM8-HNYJ]. To mitigate increased heat’s impacts on agriculture, AI can improve crop productions by using data from sensors monitoring crop moisture, soil composition and temperature to let farmers know when crops need watering. See Renee Cho, Artificial Intelligence—A Game Changer for Climate Change and the Environment, STATE OF THE PLANET, COLUMBIA UNIV.: EARTH INST. (June 5, 2018), https://blogs.ei.columbia.edu/2018/06/05/artificial-intelligence-climate-environment [https://perma.cc/3C4U-XFM3]; see also Sjaak Wolfert et al., Big Data in Smart Farming—A Review, 153 AGRIC. SYS. 69, 70 (2017) (discussing how smart devices “extend conventional tools [in farming] (e.g. rain gauge, tractor, notebook) by adding autonomous context-awareness by all kind of sensors, built-in intelligence, capable to execute autonomous actions or doing this remotely”).

18. Globally, buildings account for approximately six percent of GHG emissions, but depending on how the sectors are parsed, they can also encompass part of industry’s global emissions (twenty-one percent). See Global Greenhouse Gas Emissions Data, supra note 15. AI can improve energy efficiency and reduce consumption for buildings. HARNESSING AI, supra note 17, at 14.
while still successfully using AI to help put a “check” on the impending havoc caused by climate change.

I. Climate Change and Artificial Intelligence

Climate change is one of the more daunting problems facing society. But because the worst of its impacts are likely to take place in the future, more immediate and manageable problems that fit within an election cycle often dominate the political stage.19 Behavioral experts even remind us that people are more inclined to discount the greatest dangers in society as a defense mechanism.20 Denial can do wonders for one’s psyche but little for one’s grandchildren. This Part provides a brief primer on climate change. It focuses on its technical and data challenges and provides examples of AI’s generic climate applications for reducing GHGs.

A. Climate Change

Climate change is a global problem, and addressing it involves both mitigation of carbon emissions and adaptation to its effects. Researchers from around the world have come together to study the basis and impacts of a warming world,21 concluding that human-induced increases of GHG emissions since the industrial revolution have been the “dominant cause” of unprecedented increases in global temperature.22 A 2018 Special Report by the United Nations Intergovernmental Panel on Climate Change (IPCC) found that limiting global warming to 1.5°C is necessary to reduce challenging impacts on ecosystems and human health and wellbeing.23

To avoid the extreme consequences accompanying a global temperature increase of 2°C,24 the IPCC declared that greenhouse-gas pollution would have

22. According to the 2018 IPCC report “human influence has become a principal agent of change on the planet” and “[h]uman influence on climate has been the dominant cause of observed warming since the mid-20th century” INTERGOV’TAL PANEL ON CLIMATE CHANGE (IPCC), SPECIAL REPORT: GLOBAL WARMING OF 1.5 °C, at 1, 51 (2018), https://www.ipcc.ch/sr15 [https://perma.cc/3T7Z-EVJ5].

23. Id.

24. According to the report, a 2°C temperature increase would greatly exacerbate extreme weather, rising sea levels and diminishing Arctic sea ice, coral bleaching, and loss of ecosystems, among other impacts. Id. at 53, 69-70.
Artificial Intelligence and Climate Change

to decrease 45% by 2030, and 100% by 2050. To accomplish these lofty goals, the report recognizes that these deep emissions cuts will need to be rapid and far-reaching and will require “unprecedented changes in all aspects of society.” Such unprecedented societal changes will need to occur across many dimensions of society, as the largest carbon emissions in the United States come from transportation (29%), followed closely by electricity (28%), industry (22%), commercial and residential buildings (12%), and agriculture (9%). Researchers, scientists, and policymakers have developed both mitigation and adaptation strategies, with varying degrees of political acceptance. But much more needs to be done. As the Ninth Circuit found, “[c]opious expert evidence establishes that this unprecedented rise stems from fossil fuel combustion and will wreak havoc on the Earth’s climate if unchecked.”

B. Artificial Intelligence and Climate

AI appears naturally poised to address these transformational challenges presented by climate change. This Section provides a brief explanation of AI and some examples of its use to mitigate irreversible environmental damage.

1. Artificial Intelligence

Artificial intelligence has become ubiquitous in today’s society. What began in the 1950s with data scientists has morphed into a commonplace term. But most articles on AI still begin by acknowledging that this term is

25. Id. at 116.
26. Id. at 77.
28. Morocco is one of only two countries (the other being The Gambia) that is on track to reduce its carbon-dioxide emissions to limit warming to 1.5°C, partly due to its investment in the largest concentrated solar farm in the world. Kieran Mulvaney, Climate Change Report Card: These Countries Are Reaching Targets, NAT’L GEOGRAPHIC (Sept. 19, 2019), https://www.nationalgeographic.com/environment/2019/09/climate-change-report-card-co2-emissions[]. As a comparison, the United States has been rated “critically insufficient” by the Climate Action Tracker (CAT), the worst rating possible for measuring emission-reduction efforts. Id. CAT even estimates that if the Trump administration’s environmental agenda is fully implemented, the United States’ annual GHG emissions by 2030 could increase by an amount equivalent to the California’s total annual emissions. Id.
29. Juliana v. United States, 947 F.3d 1159, 1166 (9th Cir. 2020).
amorphous, capable of many and varied definitions. As noted earlier, one can begin thinking about AI as “a set of techniques aimed at approximating some aspect of human or animal cognition using machines.” Perhaps part of the problem in grasping this slippery concept is that we humans do not fully understand how our own cognition works. Accepting the limitations of our own knowledge may make it easier to accept AI’s gray areas. Our limited understanding may also explain why AI is often defined using examples that illustrate various types of cognitive tasks that computers can accomplish—for example, speech or facial recognition, problem solving, natural language processing—which are narrow and discrete, especially compared to the vast capacities of the human brain.

At the outset, therefore, it is critically important to at least establish clear conceptual divides, if not clear definitions between three key concepts: data...
analytics, AI, and machine learning. While all three require big data to be effective, these can be treated as nested, but distinct, concepts. Data analytics of old involved humans gathering vast quantities of data with the goal of aggregating and analyzing its “commonalities” to try to find relationships between variables. Assumptions are made by humans and the data is “queried to test” those relationships. In the electricity sector, data analytics assists in forecasting, operating, and settling payments. Some suggest that data analytics can do “most of what utilities need without the cost and complexities of AI and [machine learning].”

But the additional cost and complexity of AI and machine learning are sometimes justified. Today’s data analytics often involves machine learning, allowing the process to go beyond just analyzing data by making assumptions, testing, and learning autonomously. Machine learning is a collection of techniques that rely upon massive amounts of data to train an algorithm and enable its continuous self-improvement. Humans provide the data and specify some key parameters. But at each pass, the algorithm first makes an educated guess about what type of information to look for and then updates the next guess based on how well the previous one worked.

With that understanding, one can then better understand why machine learning has become the poster child of today’s AI. AI can refer to a wide spectrum of technologies, of which machine learning is but one, but it is often

38. See Reavie, supra note 36; see also Sunny Srinidhi, Data Science vs. Artificial Intelligence vs. Machine Learning vs. Deep Learning, MEDIUM: TOWARDS DATA SCI. (Nov. 19, 2019), https://towardsdatascience.com/data-science-vs-artificial-intelligence-vs-machine-learning-vs-deep-learning-9fadd8bda583 [https://perma.cc/34LU-7UEY] (discussing how “[m]achine learning is used in data science to make predictions and also to discover patterns in the data,” whereas AI is “a collection of mathematical algorithms that make computers understand relationships between different types and pieces of data such that this knowledge of connections” is used to make decisions and draw conclusions).

39. See Reavie, supra note 36.

41. Trabish, supra note 6.

42. Reavie, supra note 36.

43. Meserole, supra note 31.

44. Id.

45. Reavie, supra note 36.
used interchangeably with machine learning because learning-based AI “diagnoses problems by interacting with the problem,” by making assumptions, reassessing models, and re-evaluating the data all without human intervention. “The core insight of machine learning is that much of what we recognize as [human] intelligence hinges on probability rather than reason or logic.”

Although many are hoping for development of “broad AI,” reflected by machines with abilities that meet or surpass human-level cognition, today’s “narrow AI” is much more like a Roomba than the Terminator. AI today is good at clearly-defined tasks but still lacks a broad understanding of the world, common sense, the ability to learn from limited examples, consciousness, or true out-of-the-box creativity.

2. Artificial Intelligence and Climate

AI seems particularly fitting for addressing questions surrounding climate change, an area rife with massive data challenges. Monitoring GHGs and their sources has been ongoing for decades, but the data has remained difficult to parse, analyze, and use productively. Meaningful climate science requires collecting huge amounts of data on many different variables such as temperature and humidity, but working with such massive data sets is challenging. Nevertheless, some suggest that “rapid and incessant increases,

47. Trabish, supra note 6.
49. Some think this comes down to three aspects: “(1) the ability to generalize knowledge from one domain to another and take knowledge from one area and apply it somewhere else; (2) the ability to make plans for the future based on knowledge and experiences; and (3) the ability to adapt to the environment as changes occur.” Kathleen Walsh, Rethinking Weak vs. Strong AI, FORBES (Oct. 4, 2019), https://www.forbes.com/sites/cognitiveworld/2019/10/04/rethinking-weak-vs-strong-ai/?761922863d3 [https://perma.cc/5MPM-VP3H].
51. The Terminator (Hemdale Film Corp. 1984).
52. Meserole, supra note 31.
55. See James H. Faghmous & Vipin Kumar, A Big Data Guide to Understanding Climate Change: The Case for Theory-Guided Data Science, 2 BIG DATA 155, 155-163 (Sept. 2014) (stating that “showing that solely relying on traditional big data techniques results in dubious findings” and instead proposing “a theory-guided data science paradigm that uses scientific theory to constrain both the big data techniques as well as the results-interpretation process”); Maria Korolov, AI’s Biggest
Artificial Intelligence and Climate Change

and improvements in the sophistication, affordability, compactness, and use of technology are enabling the prompt generation and analysis of copious data sets.”

Investing in ways to conquer these challenges can yield great benefits. AI is already being used to analyze images of shallow-water reefs to recognize coral by color to track the effects of climate change and to collect temperature, humidity, and carbon-dioxide data to track the health of our forests. With almost a billion people currently without electricity in the world, AI can also play a role in democratizing electricity by providing more affordable access to it and by facilitating off-grid zero-carbon electrification through microgrid development. AI can also help predict where carbon emissions come from, which can help influence policy makers and financiers on how and where to regulate and invest in energy production.

Given machine learning’s predictive strengths, one can imagine its application to solve numerous other facets of climate change. One of the most obvious applications of AI to climate change is its potential to improve climate...
modeling and predictions.64 Climate (and weather prediction) models are physical models that use the governing laws of physics to arrive at solutions.65 Meteorology and climate science have used statistical techniques for decades that are now considered “AI” or “machine learning.”66 Recent innovations in machine learning for meteorological purposes are showing increasing accuracy and improved predictability from AI-constructed models.67 In addition, AI is being used more frequently to interpret the model results and square them with what is actually being observed in the atmosphere.68

II. Climate Artificial Intelligence and the Electric-Power Sector

Beyond AI’s capabilities for climate science, it can also play a vital role in efforts to reduce emissions across one of the largest contributors of GHGs: the electric-power sector. Globally, electricity accounts for roughly twenty-five percent of GHG emissions.69 In the United States, the electric-power sector is the second-leading GHG emitter, accounting for nearly twenty-eight percent of all GHG emissions.70 Furthermore, the demand for electricity is expected to grow as the transportation sector transitions to electric vehicles.71 Such increased electricity use will result in increased GHG emissions unless steps are taken to decarbonize the electric grid.

Comprised of generation, transmission, distribution, and consumption of electricity, the electric-power sector has plenty of opportunities for AI, including accelerating the development of clean-energy technologies, improving electricity-demand forecasts, strengthening system optimization and management, and enhancing system monitoring.72 AI may even enable the discovery of new substances for use in batteries storing energy or materials

64 For a thorough analysis of AI’s potential application for various climate-change issues by experts in machine learning, see Rolnick et al., supra note 11.
67 See Shreya Agrawal, Machine Learning for Precipitation Nowcasting from Radar Images, \textsc{33rd Conf. on Neural Information Processing Sys.}, https://arxiv.org/pdf/1912.12132.pdf [https://perma.cc/9KD2-5AQ3].
69 See Global Greenhouse Gas Emissions Data, supra note 15.
71 See infra Section II.A.
72 Rolnick et al., supra note 11.
absorbing carbon dioxide from the atmosphere. Finally, AI can help make the grid safer, more efficient, and more reliable by integrating data from hazards such as wildfires and extreme storms and adjusting grid operations accordingly. Although AI has historically been used in legacy fossil-fuel operations, it is also being used to help develop more sustainable potential fuels of the future such as fusion technology.

This Part describes both the importance of the electricity sector for climate change, as well as three areas where AI can assist in reducing GHGs from the electricity sector: (1) optimizing grid assets, (2) increasing energy efficiency, and (3) enhancing reliability and resiliency.

A. Artificial Intelligence for Optimizing Grid Assets

One of the most obvious AI applications for the electricity sector involves optimizing grid assets: improving the way energy is used in the grid, both for conservation and efficiency purposes. While the U.S. grid has historically been comprised of thousands of large, centralized generation sources (for example, power plants), the grid has been undergoing a significant transformation. This transformation includes an increase in renewable generation sources, many of which are taking the form of smaller, distributed resources (for example, rooftop solar and energy storage), a smart grid to help facilitate these resources, and a shift toward more electric vehicles. This section addresses AI applications in each of these four areas.

Intermittent Renewables. A first step to reduce GHG emissions from the electricity sector is to shift the country’s reliance from fossil fuels to renewables. In 2019, the United States relied on fossil fuels for approximately sixty-three percent of its electricity needs. Renewable penetration, however, has been growing steadily and is projected to comprise seventy-six percent of new planned U.S. generating capacity in 2020. But much of renewable energy
is intermittent, only providing electricity when the sun is shining or the wind is blowing. Compared to baseload sources like nuclear and natural gas, which can provide electricity on a more continual basis, this intermittency creates unique reliability challenges.

AI can be used to enhance the predictability of these intermittent renewables, enhancing their value. For instance, Google and DeepMind applied machine learning to wind power capacity in the United States “to better predict wind power output thirty-six hours ahead of actual generation,” assisting in optimal hourly day-ahead delivery commitments. Google claims that the use of machine learning boosted the value of its wind energy by approximately twenty percent.

“AI is increasingly being used to manage the intermittency of renewable energy so that more can be incorporated into the grid; it can handle power fluctuations and improve energy storage as well.” For example, AI can be used to adjust wind-farm propellers to keep up with changing wind directions, therefore decreasing the intermittency issue of wind turbines. Similarly, AI can help design the layout of renewable energy sources, such as solar power or wind-turbine farms. Perhaps most impressively, AI can improve the storage of renewable energy during intermittent periods of downtime by maximizing the efficiency of large energy batteries to prolong their lifespans with fewer issues. Such efficiency maximization requires large-scale data analysis, making it ideal for AI involvement.

Distributed Resources. A second and related result of the move toward more renewables is a shift from large, centralized power sources to smaller, decentralized sources located closer to the place of use. In the residential

83. Id.
84. Cho, supra note 17.
85. Id.
88. Id.
89. Id.
90. See Distributed Generation of Electricity and Its Environmental Impacts, U.S. ENVTL. PROT. AGENCY, https://www.epa.gov/energy/distributed-generation-electricity-and-its-environmental-impacts [https://perma.cc/E4U4-YEHE] (stating that the United States has more than 12 million distributed generation units, which is about one-sixth of the capacity of the nation’s existing

902
Artificial Intelligence and Climate Change

sector, common distributed energy resources (DERs) include rooftop solar and wind, combined heat and power (CHP), fossil fuel generators, fuel cells, energy storage, microgrids, and nanogrids. Utilities are struggling to manage these distributed resources, many of which are not owned, managed, or even visible to the grid managers. As others have explained, “one large spinning coal-fired plant is not easily replaced with tens of thousands of smaller/residential distributed energy sources.” Distributed resources even can include demand response (efforts to shift demand to better match supply), which results in pushing use of electricity into off-peak time periods. It is predicted that in the next decade there may be more distributed energy resources coming onto the electrical grid than any utility can manage.

AI is poised to assist in these challenges. An autonomous energy grid could optimize this integration process to benefit the power system and DER owners. “AI can help [utility companies] manage their generation assets more efficiently, reliably, and flexibly in response to supply and demand fluctuations from distributed generation.” Similarly, AI can be used to learn the variables impacting effective demand response and to optimize small-scale systems for automated demand response in a decentralized manner. For example, to help centralized power plants). Of course, there are several centralized or utility-scale renewable generation sources. For instance, 69% of solar generation in 2018 was utility-scale (1 MW or greater). Cara Marcy, Today in Energy, U.S. ENERGY INFO. ADMIN. (Mar. 19, 2019), https://www.eia.gov/todayinenergy/detail.php?id=38752 [https://perma.cc/M7FG-PUH3].

92. See, e.g., Stein, supra note 81, at 888-95.

95. Id.

96. See Trabish, supra note 6.

shift energy use to off-peak times, an AI system would need to learn the thermal properties of a home, the local weather conditions, the way these conditions impact heat flows of a home, and user preferences, as well as adapt energy consumption against real-time price signals.

Smart-Grid Infrastructure. A third and critical component to facilitating a transformed electric grid is a smarter grid.

The United States’ electricity industry is expected to spend “approximately $3.5 billion annually [on the smart grid alone] . . . as part of modernization efforts,” reaching $46 billion for the period from 2018 through 2030 (in nominal dollars). The Department of Energy (DOE) describes the smart grid as “an intelligent electricity grid—one that uses digital communications technology, information systems, and automation to detect and react to local changes in usage, improve system operating efficiency, and, in turn, reduce operating costs while maintaining high system reliability.”

As just a few examples, winners of the DOE’s 2019 Innovation Challenge proposed the following AI advancements:

(a) *Southern California Edison:* Proposed virtualizing components of electric grid substations and operating them using a human-machine interface (HMI).

(b) *Siemens Corporation:* Proposed developing a green-technologies digital companion that combines semantic technologies, machine learning, and augmented reality to give grid operators better visibility into the grid’s status. The companion could enable predictive capabilities using different data sets such as weather and charging infrastructure.

Many of these “[i]nvestments in digital communications technology, information systems, and automation in an effort to accommodate more complex power flows and to improve overall reliability, efficiency, and safety, while also meeting future demand from new uses” can be facilitated using AI.

Electric Vehicles. One last area of grid asset optimization lending itself to AI is the ongoing shift from internal combustion engines toward electric vehicles.

99. Richard J. Campbell, R45156, Cong. Research Serv., *The Smart Grid: Status and Outlook* (2018). Although the term “smart grid” is broadly defined by statute to include other areas of the electricity sector discussed here, such as distributed resources and electric vehicles, the digital technologies and controls used to enable the smart grid suggested a separate section was justified. See Energy Independence and Security Act of 2007, 42 U.S.C. § 17381 (2018).

101. Id. at 1 (citing Dep’t of Energy, Quadrennial Energy Review, Transforming the Nation’s Electricity System: The Second Installment of the QER, at S-4 (Jan. 2017)).

Artificial Intelligence and Climate Change

vehicles (EVs). Although the transportation and electricity sectors have been historically distinct, this transition is blurring the lines between them.¹⁰⁴ This is because the automotive industry will increasingly rely on the electric grid if worldwide sales of EVs continue to grow exponentially.¹⁰⁵ EVs are fueled by a much more diverse mix of electricity sources, including some percentage of renewables, that varies depending on the geographic location of the charger.¹⁰⁶ In this way, the larger the grid’s reliance on renewables, the larger the GHG reductions that occur from this shift to EVs.

AI can be useful in this transformation by helping to improve EV charge scheduling, congestion management, vehicle-to-grid algorithms, and battery-energy management, as well as by assisting in the research and development of EV batteries.¹⁰⁷ Moreover, modeling consumer use and charging behavior will be essential for grid operators to predict and manage electric load.¹⁰⁸ AI can help coordinate the movement of EVs, optimize their charge cycles, and predict aggregate user demand.¹⁰⁹

AI advancements in autonomous vehicles also may play a critical role in decreasing GHG emissions, particularly if they continue to be dominated by electric vehicles.¹¹⁰ A report by the World Economic Forum concluded that AI will be particularly vital to the shift to autonomous connected EVs.¹¹¹ Incorporating machine learning into autonomous EVs will help optimize transport networks as connected vehicles communicate with one another and

¹⁰⁷. Rolnick et al., supra note 11, at 17; see also Matthew Vollrath, How We Could Supercharge Battery Development for Electric Vehicles, STAN. ENGINEERING (Feb. 28, 2020), https://engineering.stanford.edu/magazine/article/how-we-could-supercharge-battery-development-electric-vehicles [https://perma.cc/L2WP-LAZS] (describing an algorithm to test new batteries that improved testing time by 98% (from 2 years to 16 days)).

¹⁰⁸. Rolnick et al., supra note 11, at 17.

¹⁰⁹. Ramchurn, supra note 98.

with transport infrastructure to identify hazards and improve navigation. 112
Furthermore, “[i]t has been estimated that smart automated driving systems
could see a 15% reduction in fuel consumption over human operators.” 113

Such a shift to electric vehicles also would provide a unique opportunity
for utilities. Although global energy demand has increased in recent years, 114
U.S. electricity-consumption projections are relatively stagnant. 115 However,
some researchers project electricity demand could increase by as much as
thirty-eight percent with the increased demand created by a massive new fleet
of EVs. 116 Together, AI can yield significant grid-optimization benefits for the
increased intermittent renewables and distributed resources, as well as for
smart-grid and EV deployment.

B. Artificial Intelligence for Increasing Electric-Grid Efficiency

In addition to the shift to electricity resources with a smaller carbon
footprint, utilities could also be taking a second, and less obvious, step to
reduce GHGs: using AI to target inefficiencies. A recent report by the
Lawrence Livermore National Laboratory found that around sixty-eight percent
of energy produced in the United States is “rejected.” 117 Rejected energy is part
of the energy of a fuel—such as gas or oil—that could be used for a purposeful
activity, like making electricity or transport, but instead is lost to the
environment. 118 Rejected energy most often takes the form of waste heat, such
as the warm exhaust from automobiles and furnaces. 119 The substantial growth
in energy use over the past fifty years for electricity and transportation, sectors

112. See, e.g., HARNESSING AI, supra note 17; Jeffrey, supra note 57 (discussing how
DHL is optimizing their fleet by predicting demand, risk, supply-side variations and fifty-six other
variables).

113. Greenman, supra note 16.

114. See INT’L ENERGY AGENCY, supra note 13, at 21-24 (noting that global energy-related
carbon-dioxide emissions rose 1.7% in 2018 to a historic high of 33.1 Gt CO2, primarily driven
by increased energy demand).

115. David Roberts, After Rising for 100 Years, Electricity Demand Is Flat. Utilities
Are Freaking Out, Vox (Feb. 27, 2018), https://www.vox.com/energy-and-
to a combination of greater energy efficiency, outsourcing of heavy industry, and customers generating
their own power on site, demand for utility power has been flat for 10 years, and most forecasts expect it
to stay that way.”).

116. Robert Walton, EVs Could Drive 38% Rise in US Electricity Demand, DOE Lab
electricity-demand-doe-lab-finds/527358 [https://perma.cc/6MEH-NPWG].

OTAGO: ENERGY CULTURES (July 7, 2014), https://energycultures.org/2014/07/rejected-energy-much-
ergy-unloved [https://perma.cc/YS73-SGN8].

119. U.S. Energy Use Rises to Highest Level Ever (Apr. 11, 2019), LAWRENCE
[https://perma.cc/H43C-KQID].
that are historically poor at turning fuel into work, has caused energy waste to gradually prevail over energy productivity.120 Inefficiencies exist in all aspects of the electric grid, but electricity generation in particular wastes approximately two-thirds of its primary energy potential.121 While the second law of thermodynamics explains why it is impossible for heat engines to achieve 100\% efficiency, there is still plenty of room for improved efficiency in the electricity sector.122

AI is primed to reduce these inefficiencies. On the generation side, AI can help reduce inefficiencies at existing fossil-fuel operations123 and nuclear plants,124 as well as enhance the efficiency of the newer renewable grid resources. For instance, AI can assist in the design and operation of wind and solar farms to make these utility-scale renewable-energy systems much more efficient at generating electricity.125 For wind farms, the turbine heads can be actively oriented to capture a greater fraction of the incoming wind.126 For solar power, with more intelligent solar forecasting, AI can make it easier and more lucrative for solar generators to participate in electricity markets.127

AI can also be instrumental in reducing energy losses in electricity transmission and distribution.128 For example, a distribution-system operator

\begin{thebibliography}{99}
\item [121.] U.S. Energy Use Rises to Highest Level Ever, supra note 119.
\item [123.] See Transforming Exploration and Production with AWS Machine Learning, AMAZON WEB SERVS., https://d1.awsstatic.com/Industries/Oil/AWS_Oil_Gas_Solution_Brief_FINAL.pdf [https://perma.cc/KJM8-MHU7] (advertising Amazon’s machine learning AWS program to oil and gas companies to assist in oil drilling).
\item [124.] See generally Mario Gomez-Fernandez et. al, Status of Research and Development of Learning-Based Approaches in Nuclear Science and Engineering: A Review, 359 NUCLEAR ENGINEERING & DESIGN 1 (2020) (“The International Atomic Energy Agency (IAEA) has suggested that it’s necessary to address obsolescence issues, to introduce new beneficial functionality, and to improve overall performance of the plant and staff” and to ‘enhance and detect subtle variation that could remain unnoticed,’ including the use of artificial intelligence (AI) to support decisions.” (internal citations omitted)).
\item [125.] Victor, supra note 74.
\item [126.] Id.; see also Solar and Wind Forecasting, NAT’L RENEWABLE ENERGY LABORATORY, https://www.nrel.gov/grid/solar-wind-forecasting.html [https://perma.cc/5XMV-JHCF] (describing ways that AI can be used for “forecasting”). Digital twin technologies can also be used to enhance efficiencies. See McClelland, supra note 97 (“The digital twin serves as a platform for modeling existing physical systems in the digital realm, so a company can run different scenarios to determine certain outcomes, then make appropriate changes to the real-life environment or system.”).
\item [127.] See Solar and Wind Forecasting, supra note 126.
\item [128.] Jacques Bughin et al., Artificial Intelligence: The Next Digital Frontier, MCKINSEY GLOBAL INST. 1 (June 2017), https://www.mckinsey.com/~/media/McKinsey/Industries/Advanced%20Electronics/Our%20Insights/How%20artificial%20intelligence%20can%20deliver%20real%20value%20to%20companies/MGI-Artificial-Intelligence-Discussion-paper.ashx [https://perma.cc/S5T5-G4UB]; see also Celso Cavellucci
\end{thebibliography}
(DSO) in Europe used AI to analyze voltage, load, and grid topology data to help “operators assess available capacity on the system and plan for future needs.”129 AI allowed the DSO to use existing and incoming assets from distributed energy resources more efficiently.130 Similarly, a transmission system operator in Germany used AI to make better projections about grid loss.131 In the United States, AI could be used in current and new Advanced Distribution Management Systems (ADMS).132 ADMS is “the software platform that supports the full suite of distribution management and optimization” and performs functions such as “fault location, . . . peak demand management[,] . . . and support for microgrids and electric vehicles.”133

Lastly, AI can make great strides in reducing the demand for electricity consumption by optimizing end uses. In 2015, for instance, Google announced that it had reduced its energy use for cooling Google’s data centers by forty percent with the aid of DeepMind’s machine learning.134 Future savings seem likely, as the DeepMind project has been commissioned to help reduce waste in the UK’s National Grid.135 More recently, in 2019, the National Renewable Energy Laboratories partnered with Hewlett Packard to evaluate how AI could enhance its data center’s efficiency.136

130. Id. (“The DSO gained 50 percent efficiency and saved €9.44 million over 10 years in capital expenditures.”).

133. Id. at 4.

136. NREL, NREL and HCP Team up to Apply AI for Efficient Data Operations, NAT’L RENEWABLE ENERGY LABORATORY (Nov. 18, 2019),
Artificial Intelligence and Climate Change

Addressing these inefficiencies can have enormous impacts on carbon emissions. In fact, energy efficiency is often touted as the unsung hero of decarbonization, touching upon many sectors and producing some of the largest impacts for the lowest costs.\(^{137}\) Enhancing efficiency across multiple sectors can also help reduce electricity consumption.\(^{138}\) The International Energy Agency has argued that energy efficiency is key to the transformation of energy systems and will play an important role in cutting the growth of world energy demand to one-third of the current rate by 2040.\(^{139}\) Experts also modeled the combined impact of energy-efficiency opportunities across buildings, industry, transportation, and the electric grid, and found that such efforts can cut GHGs in half by 2050.\(^{140}\)

C. Artificial Intelligence for Electric-Grid Reliability and Resilience

A third area where AI can assist the electric grid involves reliability and resilience. The North American Electric Reliability Corporation (NERC) has distinguished between reliability and resilience for the bulk power system.\(^{141}\) Reliability is composed of both adequacy and security, focusing on the ability of the electric system to meet customer needs, as well as to “withstand sudden disturbances or unanticipated loss of system components.”\(^{142}\) Resilience, on the other hand, refers to “[t]he ability to withstand and reduce the magnitude and/or duration of disruptive events, which includes the capability to anticipate,

\(^{137}\) Steve Sorrell, Reducing Energy Demand: A Review of Issues, Challenges and Approaches, 47 RENEWABLE & SUSTAINABLE ENERGY REVIEWS 74 (2015) (stating that improving energy efficiency, along with reducing energy demand, are widely considered the most promising, fastest, cheapest, and safest means to reducing emissions).

\(^{139}\) INT’L ENERGY AGENCY, SPECIAL REPORT ON ENERGY AND CLIMATE CHANGE, PART OF THE WORLD ENERGY OUTLOOK (2015).

\(^{141}\) The bulk power system is defined as “facilities and control systems necessary for operating an interconnected electric energy transmission network (or any portion thereof), and electric energy from generation facilities needed to maintain transmission system reliability.” 16 U.S.C. § 824o(a)(1) (2018); Amy L. Stein, Regulating Reliability, 54 HOUS. L. REV. 1191, 1250 (2017).

absorb, adapt to, and/or rapidly recover from such an event.143 Al can assist in both of these goals, reducing emissions by reducing downtime and avoiding back-up generation that emits more GHGs.

Blackouts result in devastating economic impacts144 but can have severe environmental impacts too. Downtime creates inefficiencies and waste that cascade through our interconnected grid.145 Manufacturing plants and other businesses often sit idle until the power returns, sometimes causing them to have to start a process over if they were interrupted.146 For example, a short blackout in New York resulted in over twenty-nine tons of food waste.147 The GHG emission-rich process of creating and transporting that food into the city was necessarily repeated because the grid failed for just a few hours.148 In addition, the use of generators and being forced to use alternate forms of transport (if public transportation is unable to operate) can all contribute to increased emissions during blackouts.149 Preventing and swiftly curing blackouts are key to reducing catastrophic impacts.

Furthermore, utilities historically have been reactive entities. In many parts of the country, the utility is only notified of a power outage by calls from angry customers.150 The smart-grid advancements discussed above are part of

Artificial Intelligence and Climate Change

the race to modernize these distribution systems. The senility of the grid has contributed to an increased incidence of weather-related power outages, and a lack of automated sensors constrain the response time of grid operators. Older transmission lines dissipate more energy than new ones and grid deterioration increases the system’s vulnerability to severe weather.

AI can help utilities shift from reactive into proactive entities. In 2018, the Department of Energy announced a $5.8 million funding opportunity for research and development of “advanced tools and controls” to improve the resilience and reliability of the nation’s power grid. This Section discusses how AI can help with troubleshooting, aiding in preventative maintenance to minimize the amount of sudden disturbances, and improve repair times to enhance resilience.

Troubleshooting/Preventative Maintenance. Instead of waiting for grid assets to break down, AI is being used to predict problems before they occur. Given the interconnected nature of the electric grid, preventing just one equipment failure can eliminate the cascading blackouts that have occurred in many of our most notorious power outages in U.S. history.

To become more proactive, utilities and generators are using algorithms that “take into account industry-wide early failure rates for equipment, creating a richer understanding of premature failure risks for enhanced asset maintenance, workflow, and portfolio management” to predict the probability of failure. For example, the New York Power Authority (NYPA) has

151. Robert Walton, Aging Grids Drive $51B in Annual Utility Distribution Spending, UTIL. DIVE (July 25, 2018), https://www.utilitydive.com/news/aging-grids-drive-51b-in-annual-utility-distribution-spending/528531 (“A 2015 report from the U.S. Department of Energy concluded 70% of power transformers are 25 years of age or older, 60% of circuit breakers are 30 years or older and 70% of transmission lines are 25 years or older.”).

152. PRESIDENT’S COUNCIL OF ECON. ADVISERS ET AL., supra note 144, at 7.

153. Id.

155. The 2003 Northeast Blackout affected over fifty million people from New York to Montreal. This Day in History August 14: Blackout Hits Northeast United States, HISTORY, https://www.history.com/this-day-in-history/blackout-hits-northeast-united-states [https://perma.cc/HC4K-7V5P]. Many Americans feared it was caused by terrorism, and the utility companies pointed fingers at each other. Id. After a comprehensive investigation, it was discovered the outage was caused by a few overgrown trees that touched a powerline in Ohio. Id.

156. See Peter Maloney, SRP Taps AI to Monitor and Improve Its IT Systems, AM. PUB. POWER ASS’N (Sept. 23, 2019), https://www.publicpower.org/pealoneyridiculous/article/srp-taps-ai-monitor-and-improve-its-it-systems [https://perma.cc/3RGA-SLNG]. SRP is using AI to monitor and visualize the system and build a dynamic IP map in real-time to “avoid outages and provide a better customer experience.” Id.

157. McClelland, supra note 97.
invested in sensors to help determine the life expectancy of key equipment and head off problems before they can affect operations at power plants.158

Power companies can use sensor monitoring for similar preventative maintenance.159 Utilities are already using devices known as phasor measurement units (PMUs) to “measure the amplitude and phase of electric current and voltage at various points on the electric grid using a common time source for synchronization” to provide a real-time snapshot of the grid’s operating status.160 In 2018, New York also announced a PMU program, which “departs sensors to collect voltage and current data at NYPA’s power generating facilities and switchyards with high-resolution and precise time stamping. The collected data can then be pulled together and used for real-time grid management, asset management and potential problem detection.”161 Although these PMUs are over a hundred times faster than the previous system used by the electric industry, “more advanced tools are needed to analyze the data for actionable information.”162

For example, utilities could shift away from a fixed schedule for asset maintenance and retirement and toward a more optimal schedule based on the actual condition of assets.163 By leveraging data from sensors and other hardware that tracks assets remotely, machine learning applications could “liberate grid operators from decommissioning assets before their useful lives have ended, while enabling them to perform more frequent inspections and maintenance to keep assets working well.”164 As one example, a European power distribution company was able to reduce its costs by thirty percent by analyzing dozens of variables to determine the overall health of transformers and diagnose individual components.165

Similarly, AI can be used to better anticipate extreme weather and natural disasters that are perilous to electric grids.166 For example, NASA recently used

158. See Maloney, supra note 154. The NYPA said that at its Robert Moses-Niagara Power Plant, it was testing an array of sensors that will help determine the life expectancy of key equipment and head off problems before they can affect operations. Id.
159. McClelland, supra note 97.
160. Maloney, supra note 154. The American Recovery and Reinvestment Act of 2009 supported the installation of over 1,000 PMUs across North America. Id. There are now PMUs deployed at over 2,500 locations across the nation’s bulk power system. Id.
161. Id. For instance, NYPA said that data from about one hundred sensors are currently being used in a simulation on a turbine-generator unit at the plant. Id.
162. Id. The so-called PMUs can gather data at a rate a hundred times faster than the Supervisory Control and Data Acquisition (SCADA) systems that are widely used in the power industry. Id.
163. Bughin et al., supra note 128, at 49.
164. Id.
165. Id.
AI to track Hurricane Harvey, allowing it to predict the storm’s movement with six times more accuracy. IBM also has an AI tool that helps predict power outages from severe storms and enables utilities to improve their emergency response times. In Switzerland, a team of scientists was able to use AI to correctly predict lightning strikes inside an 18-mile radius about 80% of the time. AI and bionic eyes are also helping to contain wildfires with the aid of IBM’s Watson AI system which visually evaluates camera feeds to spot new fires and predict where they will spread.

Facilitate repairs. As discussed above, a key component of resiliency focuses on the ability of a system to come back online. AI can become a critical tool in the effort to enhance the grid’s resiliency. “By relying on data from remote sensors, power producers can pinpoint where to send a crew for a repair, and based on an assessment of the damage, ensure the team arrives with the right tools for the job.”

Utilities have been using drones and AI trained on deep-learning algorithms, combined with sensors, to address malfunctions in remote areas. Drones collect information about many different remote issues, such as malfunctioning equipment, downed trees, or simply vegetation encroachment on remote assets. Combining AI analysis with images taken by drones creates a powerful tool for use by the energy and utility industries. Some
professionals even predict that synthesizing drones and AI will help prevent utility issues before they even happen, simply by analyzing predictive data.175

NERC Security Requirements. Bulk grid users can use AI as a more cost-effective way to satisfy the reliability requirements imposed by the nation’s reliability monitor, the North American Electric Reliability Corporation (NERC). NERC has issued security regulations to address both physical and cybersecurity threats. The regulations are designed to push entities to become more proactive by “requiring a minimum level of organizational, operational, and procedural controls to mitigate risk.”176

The NERC physical security regulations, known as CIP-014-1,177 “include six basic independent verifications of the risk assessment and an evaluation of the potential threats and vulnerabilities of a physical attack on these critical stations or substations.”178 Perhaps the most challenging requirement is to develop and implement a documented physical-security plan, which must include measures to detect and respond to physical threats.179 Among the more innovative solutions to comply with these physical-security requirements are tower-mounted robots powered by AI.180

The NERC cybersecurity regulations are more extensive than the physical security regulations, addressing cybersecurity concerns through ten regulations181 ranging from personnel training182 to incident reporting.183 This might be due in part to an increasing number of data breaches in the United

177 *CIP-014-1 — Physical Security*, https://www.nerc.com/pa/Stand/Reliability%20Standards/CIP-014-1.pdf [https://perma.cc/RC9R-KQMT].

179 Id.

180 See, e.g., id. A network “could transform a power grid’s passive security system into an active defense-and-denial physical protection system. Using non-lethal actuators, such as cameras and sensors, the system detects, delays, and safely thwarts a potential attacker by overwhelming them with directed, high-intensity sound, lights, and strobes.” Id.

Artificial Intelligence and Climate Change

States or to an overall heightened concern for data protection. Similar to CIP-014-1, CIP-010-2 requires entities to implement processes to develop baseline configurations of cyber assets, monitor changes in the baselines, and “[a]t least once every 15 calendar months, conduct a paper or active vulnerability assessment.” Other standards extend to both physical-security and cybersecurity threats; for example, CIP-006-6 requires entities to limit access to cyber assets to only those authorized in advance. AI could be used to combat these cybersecurity threats by predicting and responding to data breaches or automating security operations processes by providing a big-data solution to a big-data problem.

Cybersecurity threats in the energy sector are an omnipresent concern for regulators and utilities. In May of 2020, President Trump declared a national emergency in response to the threat of foreign adversaries “exploiting vulnerabilities in the United States bulk-power system.” To address these threats, President Trump prohibited any “acquisition, importation, transfer, or installation of any bulk-power system electric equipment” where the

184. See In re Equifax, Inc., Customer Data Sec. Breach Litig., 362 F. Supp. 3d 1295, 1308 (N.D. Ga. 2019) (“[H]ackers stole the personal and financial information of nearly 150 million Americans. . . . [I]t affected almost half of the entire American population. . . . The hackers stole at least 146.6 million addresses, 146.6 million dates of birth, 145.5 million Social Security numbers, 99 million addresses, 17.6 million driver’s license numbers, 209,000 credit card numbers, and 97,500 tax identification numbers.”); see also In re SuperValu, Inc., 870 F.3d 763, 766-67 (8th Cir. 2017) (discussing a class-action data-breach suit with defendant SuperValu grocery stores where “cyber criminals accessed the computer network that processes payment card transactions for 1,945 of defendants’ stores”); Lewert v. P.F. Chang’s China Bistro, Inc., 819 F.3d 963, 966 (7th Cir. 2016) (discussing a class-action data-breach suit with defendant P.F. Chang’s China Bistro after the “restaurant’s computer system had been hacked and debit-and credit-card data had been stolen”); Remijas v. Neiman Marcus Grp., LLC, 794 F.3d 688, 690 (7th Cir. 2015) (discussing a class action data breach suit with the defendant Neiman Marcus, a luxury department store, where hackers attacked defendant’s system and stole the credit card numbers of its customers); Charlotte A. Tschoeder, Regulating the Internet of Things: Discrimination, Privacy, and Cybersecurity in the Artificial Intelligence Age, 96 DENV. L. REV. 87, 140 (2018) (“The problematic state of cybersecurity has led to more frequent data breaches across industries and products.”).

185. “Previous Pew Research Center studies of the digital privacy environment have found that many Americans fear they have lost control of their personal information and many worry whether government agencies and major corporations can protect the customer data they collect.” Aaron Smith, Americans and Cybersecurity, PEW RES. CTR. (Jan. 26, 2017), https://www.pewresearch.org/internet/2017/01/26/americans-and-cybersecurity [https://perma.cc/NAA2-LXN5].

transaction “involves any property in which any foreign country or a national thereof has any interest.” Further, in a recent test by a Boston security firm, in just three days, hackers were able to completely overwhelm a fake control network modeled after control networks found in North American electric companies. The DOE has already taken steps to combat cybersecurity threats by funding programs to research and develop “cybersecurity solutions for energy delivery systems . . . to detect, prevent, and mitigate the consequences of a cyber-incident” In the energy sector, AI could be used by energy suppliers to “manage their distribution systems, including diagnosis of faults” to prevent future cybersecurity attacks, “and rerouting of power flows, with real-time awareness and control,” that allows for quick responses if a cybersecurity attack were to occur. Although grid operators have long used data analytics to address many of the issues discussed here, AI has the potential to exceed the limitations of human processing with regard to optimizing grid assets, increasing efficiency, and enhancing reliability and resiliency.

III. Key Tradeoffs for Artificial Intelligence and Climate

If we are to embrace artificial intelligence as part of the climate strategy, it will be important to be aware of the tradeoffs associated with these technological tools. As with all emerging technologies, AI may face suspicion, high upfront costs, and close scrutiny by regulators. Even established players

190. Id.
194. Of course, there may also be other explanations, including a general apathy toward change, skepticism about the cost effectiveness of AI and its tangible benefits. This short Article merely raises a few of many potential obstacles. See generally Gary E. Marchant & Yvonne A. Stevens, Resilience: A New Tool in the Risk Governance Toolbox for Emerging Technologies, 51 U.C.
Artificial Intelligence and Climate Change

in the energy industry may lack a general understanding of its capabilities and its limitations, making it difficult for them to have the same comfort level that exists when relying on the status quo. This Part analyzes just a few of the major tradeoffs associated with increased use of AI to address electricity-related climate issues: (1) environmental impacts, (2) data privacy, (3) investment and procurement, and (4) accountability. Within each tradeoff, it also provides normative recommendations for how to best move forward with AI in a way that best balances the competing needs of the industry, the consumers, and the public interest.

A. Environmental Impacts

For all its potential to reduce electricity usage and optimize efficiencies associated with the electric grid, AI can also be a large consumer of electricity. Data centers consume more than 2% of the world’s electricity, and researchers have predicted that by 2025, that number could rise to somewhere between 8% (best case) and 21% (expected). These numbers might grow

DAVIS L. REV. 233 (2017) (discussing the challenges of governing emerging technologies, including “highly uncertain benefits, risks, and trajectories associated with the technology, an extremely rapid pace of development and change, and a broad range of applications that implicate many different industries, regulatory agencies, and stakeholders”); Grant Wilson, Minimizing Global Catastrophic and Existential Risks from Emerging Technologies Through International Law, 31 VA. ENVTL. L.J. 307, 309 (2013) (noting that while many scientists point to developments in nanotechnology, bioengineering, and artificial intelligence as a panacea for disease, pollution, and even mortality, these emerging technologies also risk massive human death and environmental harm).

196. In the Cascade Mountains in Washington, Bitcoin miners are flocking to the area to take advantage of cheap electricity. Udi Merhav, Are Utilities Ready to Do What It Takes to Survive, SMART ENERGY INT’L (Jan. 29, 2019), https://www.smart-energy.com/industry-sectors/smart-grid/are-utilities-ready-survive-udi-merhav-energy-orbit [https://perma.cc/Y6P8-MFRS]. Cryptocurrency mining consumesordinate amounts of energy, stressing the local grid and utility companies. Id. Instead of taking advantage of the increased demand, the local utility companies treated the miners like a problem to be stopped. Id. Even utilities that have adopted technologies such as smart meters are failing to use the meters to their full potential. See Jeff. St. John, Why Most US Utilities Are Failing to Make the Most of Their Smart Meters, GREENTECH MEDIA (Jan. 10, 2020), https://www.greentechmedia.com/articles/read/why-most-u-s-utilities-arent-making-the-most-of-their-smart-meters [https://perma.cc/WP2K-6H22]. See Table 1 in the Article for a good representation of various utilities’ adoption of smart meter technologies. Id. tbl.1.

197. To be sure, there are many more that could be discussed, including whether the “social problems with the culture of ‘free online’” and the current model of extracting value from a vast number of people without paying them is a threat not just to a stable economic but also to democracy. Imanol Arrieta Ibarra et al., Should We Treat Data as Labor? Moving Beyond “Free,” 108 AEA PAPERS AND PROCEEDINGS 38, 38 (2018); see also JARON LANIER, WHO OWNS THE FUTURE?, at xxv (2014) (arguing that the idea of free information is a fallacy because whomever possesses the best computer will always gain “information superiority” and “limitless wealth and influence”).

even bigger, as one study suggested when it found that computational resources used by AI are increasing at an alarming rate.200 One study from the University of Massachusetts found that training a large AI model to handle human language can lead to emissions about five times the lifetime emissions of the average car in the United States.201

This concern may be tempered by the wide variety of processing demands across the many different types of AI.202 As discussed earlier, AI refers to a broad set of techniques, including machine learning. Each of these techniques has vastly different computing needs, depending on the complexity of the task and the efficiency of the algorithm deployed. For example, the processing of human language, the AI technique evaluated in the Massachusetts study,203 is one of the most energy-intensive uses of AI.204 Fortunately, that technique is not as prevalent in the algorithms used to reduce the carbon intensity of the electric industry.205 By being conscious of the varying energy demands, the

200 Dario Amodei & Danny Hernandez, \textit{AI and Compute}, OPENAI (May 16, 2018), https://openai.com/blog/ai-and-compute [https://perma.cc/2WMC-CBNT]. In 2018, the power consumed by the entire Bitcoin network was estimated to be higher than that of the Republic of Ireland. Alexa Hern, \textit{Bitcoin’s Energy Usage Is Huge – We Can’t Afford to Ignore It}, GUARDIAN (Jan. 17, 2018), https://www.theguardian.com/technology/2018/jan/17/bitcoin-electricity-usage-huge-climate-cryptocurrency [https://perma.cc/2X2H-CF9V]. Some studies give us hope, showing that leaps in efficiency might soon outpace the growth of energy consumption. \textit{See Data Centres and Data Transmission Networks}, INT’L ENERGY AGENCY (May 2019), https://www.iea.org/reports/tracking-buildings/data-centres-and-data-transmission-networks [https://perma.cc/5QJA-AB3K] (“Based on current trends in the efficiency of hardware and data centre infrastructure, global data centre energy demand is projected to decrease slightly.”). Data centers are not the only part of AI that can have a significant environmental impact. As AI develops, sensors are going to become increasingly important, as most of this data is collected through a series of physical sensors before it is stored in a data center. Vivienne Sze et al., \textit{Hardware for Machine Learning: Challenges and Opportunities}, MIT (Oct. 17, 2017), https://arxiv.org/pdf/1612.07625.pdf [https://perma.cc/Z67Y-Y9XR] (discussing how there were an estimated 10 billion sensors in use in 2013 and that number is expected to rise to 1 trillion by 2020).

201 \textit{See Emma Strubel et al., \textit{Energy and Policy Considerations for Deep Learning in NLP}}, 57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS 1 tbl.1, 4 tbl.4 (June 5, 2019), https://arxiv.org/abs/1906.02243 [https://perma.cc/W9UB-LHAP] (discussing that the average lifetime emissions of a car are 126,000 pounds of carbon dioxide and training the NAS algorithm resulted in almost 626,155 pounds of carbon-dioxide emissions).

203 Strubel et al, \textit{supra} note 201, at 3.

205 The algorithms used in the electricity sector, discussed \textit{supra} in Part II, use precise numbers, such as error rates and voltages, that do not have the same uncertainties and variation that natural language processing does. Garbade, \textit{supra} note 204 (“While humans can easily master a
Electric-power sector may be able to favor the less energy-intensive algorithms to reduce emissions. It will also be important to keep an eye on the oil and gas industry’s use of AI to enhance efficiency. Depending on those algorithms’ energy demands, AI’s use in fossil fuels may make their associated emissions cheaper to emit and increase their competitive advantage over less carbon-intensive resources.

If AI is to be used to combat climate change, we need to ensure that AI’s negative environmental impacts are outweighed by its positive ones. Fortunately, there are several ways to do that, three of which are discussed below: (1) disclosure requirements, (2) certification regulations, and (3) increasing data sharing.

Disclosure. A first solution, proposed by the Allen Institute for AI, would be having AI researchers include various financial and computational costs in their published results. Other scholars also advocate for greater visibility and disclosure of environmental impacts. Researchers recently developed a carbon-emissions tracker for machine learning that allows researchers to train the data on their system and then generate emissions totals. In addition to emissions disclosures, researchers should report the amount of AI’s other

language, the ambiguity and imprecise characteristics of the natural languages are what make NLP difficult for machines to implement.); Will Knight, *AI Can Do Great Things—If It Doesn’t Burn Down the Planet*, Wired (Jan. 21, 2020), https://www.wired.com/story/ai-great-things-burn-planet [https://perma.cc/TW9M-47KM] (“Recent advances in natural language processing—an AI technique that helps machines parse, interpret, and generate text—have proven especially power-hungry.”).

207. This “rebound effect” is called the Jevon’s Paradox. See Sara C. Bronin, *Building-Related Renewable Energy and the Case of 360 State Street*, 65 VAND. L. REV. 1875, 1934 (2012) (“A term that refers to the phenomenon of increased efficiency leading to a reduction of the price of services, leading in turn to increased consumption of services, which offsets the benefits of the initial improvements in efficiency.”). See generally W. STANLEY JEVONS, THE COAL QUESTION (A.W. Flux ed., 3d rev. ed. 1906) (discussing the Jevon’s paradox as applied to Britain’s coal industry).

209. Ehrenkranz, supra note 204.

ecological costs, including the heat and electronic waste generated and the raw materials used.211

The hope is that increasing transparency and accountability would make researchers put more effort into keeping those costs low212 and bring awareness to potential impacts of algorithms.213 The Allen Institute of AI specifically suggests researchers disclose carbon emissions, electricity usage, elapsed real time, number of parameters used by the model, and the number of floating-point operations214 to generate a full picture of the potential impacts of the algorithm.215 Researchers can only compare the costs to the benefits of an algorithm if they are aware of the potential costs—a topic that is often absent from conversations about the training and creation of algorithms.216

Certification. A second solution mimics other environmental regimes by contemplating a certification requirement. The Allen Institute proposed a certification for AI practices, labeling carbon-neutral AI as “green” and non-carbon-neutral AI as “red.”217 As with other environmental-certification regimes, these labels can have important signaling effects that motivate companies to internalize their electricity use. As with organic-label regulation, federal agencies could be involved in this certification process.218 But as with other environmental-certification regimes, these labels also run the risk of greenwashing.219

Data Sharing. A last approach for minimizing the environmental impacts of AI’s computing power would be to enhance the sharing of data used in climate-related algorithms. Data are algorithms’ key input, and one person’s

211. See Borning et al., supra note 210 (assessing the “dark side of IT’s materiality”).
212. Hao, supra note 208.
213. For example, scientists, when confronted with the issue of heat waste, have proposed methods of reusing the waste to heat nearby neighborhoods to make AI more efficient. See, e.g., Marcel Antal et al., Reuse of Data Center Waste Heat in Nearby Neighborhoods: A Neural Networks-Based Prediction Model, MDPI (2019), https://www.researchgate.net/publication/331489955_Reuse_of_Data_Center_Waste_Heat_in_Nearby_Neighborhoods_A_Neural_Networks-Based_Prediction_Model [https://perma.cc/9GUR-HP4D]; Ehrenkranz, supra note 204.
214. Floating-point operations provide an estimate of the amount of work performed by a computational process. Schwartz et al., supra note 208, at 6.
215. Id. at 6.
216. Professor Luccioni states, “We’re not telling people, don’t emit or don’t train or don’t make this great algorithm. We’re just trying to say, compare the costs and the environmental costs and the benefit of your algorithm.” Id.; see also Alexandre Lacoste & Alexandra Luccioni et al., Quantifying the Carbon Emissions of Machine Learning (2019), https://arxiv.org/pdf/1910.09700.pdf [https://perma.cc/SCX5-ALGB] (providing a method for calculating a machine-learning algorithm’s carbon emissions).
217. Id.
218. Governmental agencies controlling energy use, such as the Federal Energy Regulatory Commission (FERC) and the National Institute of Standards and Technology (NIST), could promote “Green” certification, and control the requirements for meeting that certification. Compare to USDA Organic label certifications, for example, Organic Certification and Accreditation, U.S. Dep’t AGRIC., https://www.ams.usda.gov/services/organic-certification [https://perma.cc/V7NX-LMP5].
219. See infra Section III.D. See generally Jacob Vos, Actions Speak Louder Than Words: Greenwashing in Corporate America, 23 NOTRE DAME J.L. ETHICS & PUB. POL’Y 673 (2009).
Artificial Intelligence and Climate Change

use of the data does not reduce another’s ability to use it. Data’s nonrivalrous nature renders it a viable candidate to be treated as a public good, much as we treat scientific knowledge.

Just as the federal government has a role to play in other sorts of public goods, so too it may be a viable partner for climate-related AI. For the electric-power sector, for instance, the federal government could minimize the number of duplicative tasks related to climate AI by serving as a repository for publicly available, nonidentifying electricity data. Back in 2005, Congress took steps toward addressing these complicated issues by allowing interested persons access to nonspecific smart-meter customer information. In 2012, the White House followed by launching the Green Button Initiative in concert with the DOE. The initiative enables utility customers to securely share their data with authorized third-party service providers.

220. This reflects one of the components of “public goods,” those that are generally publicly available. Will Kenton, Public Good, INVESTOPEDIA (Mar. 25, 2019), https://www.investopedia.com/terms/p/public-good.asp [https://perma.cc/JQ4U-DSRK]. Key characteristics include nonrivalry (i.e., when one person uses a product, others are not thereby deprived of it) and nonexcludability (i.e., everyone can use it). Id.; see also Victoria Stodden, Enabling Reproducibility in Big Data Research: Balancing Confidentiality and Scientific Transparency, in PRIVACY, BIG DATA, AND THE PUBLIC GOOD: FRAMEWORKS FOR ENGAGEMENT 112, 114 (Julia Lane et al. eds.), https://web.stanford.edu/~vcs/papers/Chapter5-BigDataPrivacy-STODDEN.pdf [https://perma.cc/FRM8-FWY3] (arguing that while data is in theory accessible, ordinary people have a hard time understanding the data because the method of analyzing the data is often not included in research studies); Benjamin K. Sovacool, The Best of Both Worlds: Environmental Federalism and the Need for Federal Action on Renewable Energy and Climate Change, 27 STAN. ENVTL. L.J. 397, 471 (2008) (discussing how every state would benefit from scientific studies regarding energy and the environment and how federal regulation and intervention could make up funding gaps, provide a unilateral cooperative approach, and reduce transaction costs).

223. See Federal Smart Metering Law of 2005, 16 U.S.C. § 2621 (2018) (“Purchasers shall be able to access their own information at any time through the Internet and on other means of communication elected by that utility for Smart Grid applications. Other interested persons shall be able to access information not specific to any purchaser through the Internet. Information specific to any purchaser shall be provided solely to that purchaser.” (emphasis added)).

fifty utilities and electricity suppliers have joined the initiative, but with over 3,000 utility and electricity suppliers in the United States, it still has a long way to go.

The federal government may even be able to centralize some of the other steps in the development of quality AI. Collecting, cleaning, and partitioning the data, as well as selecting, training, and deploying the model, are all energy-consuming endeavors. Centralizing these steps would allow more efficient access to more data while avoiding exorbitant costs and minimizing the environmental impacts of training the AI. Some of such nonproprietary work can be performed by the federal government and then shared with the broader scientific community. This could help to alleviate needless duplication while researchers develop useful climate AI. Such collaborations may face familiar obstacles associated with trade secrets, intellectual property rights, and customer privacy rights. Private utility data with identifying information may not qualify for such a data-sharing initiative due to the highly personal and confidential nature of the data. The privacy implications of electricity data are discussed in Section II.B below.

226. Green Button: Open Energy Data, U.S. DEP’T ENERGY, https://www.energy.gov/data/green-button [https://perma.cc/4VBM-KL3H] (“To date, a total over 50 utilities and electricity suppliers have signed on to the initiative.”).
229. Ehrenkranz, supra note 204 (“[F]or example, Google might spend millions of compute hours training a model and then they publish it and then a similar company could take that model and just do a few compute hours transferring the knowledge to the dataset.”). With data sharing, companies like Uber and Lyft will be able to better manage issues such as congestion and pollution. See Stephen Edelstein, Ford, Uber, Lyft Join Urban Data-Sharing Project to Reduce Traffic and Pollution, DRIVE (Sept. 27, 2018), https://www.thedrive.com/tech/23874/ford-uber-lyft-join-urban-data-sharing-project-to-reduce-traffic-and-pollution [https://perma.cc/TL9Y-SVEL].
B. Data Privacy

One of the looming questions across all applications of AI concerns the privacy implications of all this data.\(^{232}\) These questions are no less important for utilities.\(^{233}\) Utilities are in a unique position of power in this situation, as they have enduring relationships with many of their customers, many of whom are captured ratepayers with no retail choice.\(^{234}\) Utilities have had longstanding access to these customers’ data,\(^{235}\) and increasing access to more granular data with the advent of smart meters.\(^{236}\)

These smart meters are particularly vexing for privacy issues. Smart meters are bidirectional meters that can be accessed remotely; communicate information on voltage, current, and power directly to utilities; and support smart consumption and pricing applications of distributed resources like rooftop solar.\(^{237}\) If AI functions better the more data it has, data sharing will be critical to successfully implementing AI technologies.\(^{238}\) There are more than

\(^{232}\) For a general discussion on Big Data and privacy concerns, see Micah Altman et al., Practical Approaches to Big Data Privacy over Time, 8 INT’L DATA PRIVACY L. 29, 29-47 (2018); David Gray & Danielle Citron, The Right to Quantitative Privacy, 98 MINN. L. REV. 62, 80 (2013); Thomas M. Lenard & Paul H. Rubin, Big Data, Privacy and the Familiar Solutions, 11 J.L. ECON. & POL’Y 1 (2015); and Ira S. Rubinstein & Nathaniel Good, Privacy by Design: A Counterfactual Analysis of Google and Facebook Privacy Incidents, 28 BERKELEY TECH. L.J. 1333, 1335 (2013). See also United States v. Jones, 565 U.S. 400, 405 (2012) (“We hold that the Government’s installation of a GPS device on a target’s vehicle, and its use of that device to monitor the vehicle’s movements, constitutes a ‘search.’ . . . The Government physically occupied private property for the purpose of obtaining information. We have no doubt that such a physical intrusion would have been considered a ‘search’ within the meaning of the Fourth Amendment when it was adopted.” (footnote omitted)); Meghanath Macha et al., Perils of Location Tracking? Personalized and Interpretable Privacy Preservation in Consumer Mobile Trajectories (2019), https://www.law.nyu.edu/sites/default/files/Beibei%20Li.pdf [https://perma.cc/Z9W8-V5G5] (discussing the tradeoffs of efficient versus optimal privacy).

\(^{233}\) Utilities are aware of the risks they face with storing data, but they may not truly understand what needs to be done to protect against these risks. See Susan Partain, Protecting Customer Trust: Ensuring Data Privacy, AM. POWER ASS’N (Sept. 4, 2018), https://www.publicpower.org/periodical/article/protecting-customer-trust-ensuring-data-privacy [https://perma.cc/4K9M-8JPD] (“Utilities already recognize the importance of protecting data However, . . . the challenge for utility managers is . . . knowing how and where to implement the right level of protection and controls.”).

\(^{234}\) See Electricity Residential Retail Choice Participation Has Declined Since 2014 Peak, U.S. ENERGY INFO. ADMIN. (Nov. 8, 2018), https://www.eia.gov/todayinenergy/detail.php?id=37452 [https://perma.cc/GXS4-LBBH] (“The number of customers participating in retail choice programs peaked at 17.2 million customers (13% of total residential customers) in 2014 and has since declined, reaching 16.2 million customers (12% of the national total) in 2016 and 16.7 million customers (13% of the national total) in 2017.”).

\(^{235}\) Access to Data: Bringing the Electricity Grid into the Information Age, ADVANCED ENERGY ECON. (Sept. 2017), https://info.aee.net/hubfs/PDF/Access-to-data.pdf [https://perma.cc/7J82-QA43] [hereinafter Access to Data].

\(^{236}\) See id. (“Historically, most electric meters were read monthly, severely limiting the actionable data available. Today, with over 50% of U.S. households having electric meters with advanced metering functionality[,] . . . tens of millions of customers now have meters that can collect granular usage data and transmit that data to the utility.”).

\(^{238}\) Walton, supra note 134.
86.8 million smart meters installed in the United States, accounting for about 56% of all meters, with that number expected to rise to 93% by 2030. “With deployment of advanced metering infrastructure (AMI) and smart sensor-equipped hardware, system operators are capturing unprecedented levels of data.” This leads to concerns about the private information that can be gleaned about individuals through their behavioral patterns, with fears of accidental or malicious surveillance, targeted home invasions, profiling, behavior tracking, or identity theft. This places additional responsibilities on the utilities as guardians of this data and raises important questions about this data’s storage, use, transfer, and disposal.

The ability of the government to access this information has even come under constitutional scrutiny in the context of warrants for this data. In 2018, the Seventh Circuit held that collecting data from smart meters constituted a “search” under the Fourth Amendment. The court held that the data “even when collected at fifteen-minute intervals, reveals details about the home that would be otherwise unavailable to government officials with a physical search. [The utility company] therefore ‘searches’ its residents’ homes when it collects this data.” Nevertheless, the court also held that the search was reasonable after balancing the intrusion against the promotion of the legitimate government interest in modernizing the electrical grid. Other state courts have disagreed, finding a warrant for such data was not required. And at

242. Trabish, supra note 6.
245. Naperville Smart Meter Awareness v. City of Naperville, 900 F.3d 521, 527 (7th Cir. 2018).
246. Id.; see also Mohassel et al., supra note 237, at 478 (explaining that, through analyzing these signatures, it is possible to determine information such as “how many people live in the house, duration of occupancy, type of appliances, security and alarming systems, to inferring special conditions such as medical emergencies”).
247. Naperville Smart Meter Awareness, 900 F.3d at 528 (“That interest is substantial in this case. Indeed, the modernization of the electrical grid is a priority for both Naperville . . . and the Federal Government.”).
least one state legislature has taken a firm stance against requiring warrants to access smart-meter data.249

Such privacy concerns run into direct conflict with efforts to minimize duplicative training and to facilitate sharing of data, steps discussed supra and viewed as critical to enabling a more modern grid.250 To address this tradeoff, stakeholders and regulators can take a number of important steps to minimize the negative privacy implications of using all this energy data. At least two avenues exist to help facilitate such collaborations: (1) rigorous procedures for anonymizing energy data; and (2) regulating data ownership, each of which is discussed below.

Anonymizing Data. Anonymization of data is a commonly used technique for protecting data privacy. Anonymization is the process of deidentifying data, such that the information can no longer “reasonably identify, relate to, describe, reference, be capable of being associated with, or be linked, directly or indirectly, to a particular individual.”251 Common data-anonymization techniques include randomization252 and generalization.253

In the United States, data-protection laws provide safe harbors for entities that anonymize their data.254 However, anonymized data is often not entirely a warrant in a drug operation to gather electricity data from a home because it did not “reveal intimate details about activity within the home”); People v. Stanley, 86 Cal. Rptr. 2d 89, 94 (App. 1999) (holding that no warrant was needed to gather data on energy consumption because “[i]t only tells officers how much electricity is being delivered by the utility and, by comparison to billing records, whether it is being diverted or stolen”).

250. See Access to Data, supra note 235 (“Timely and convenient access to granular customer and electricity system data is critical to support the development of a modern grid.”); see also Payne, supra note 231, at 361 (“Only with this granular data can [utilities] customers have actionable insights—and participate in the sharing economy. The lack of the ability to have this data, then, hampers the development of the sharing economy and the grid and environmental benefits that could come along with it.”). Although it is not a data sharing organization, sharing technology may be similarly critical. See About Us, INDUS. INTERNET CONSORTIUM, https://www.iiconsortium.org/about-us.htm [https://perma.cc/U8W5-RSED] (“The Industrial Internet Consortium was founded in March 2014 to bring together the organizations and technologies necessary to accelerate the growth of the industrial internet by identifying, assembling, testing and promoting best practices.”).

251. Online Privacy Act of 2019, H.R. 4978, 116th Cong. § 2(8) (2019); see also Tal Z. Zarsky, Governmental Data Mining and Its Alternatives, 116 Penn St. L. Rev. 285, 299 n.47 (2011) (“Anonymized data refers to data that went through an anonymization process—the process of removing identifying information and rendering the dataset anonymous.”).

252. “Randomization is a family of techniques that alter the veracity of the data in order to remove the strong link between the data and the individual.” Article 29 Data Protection Working Party, Opinion 05/2014 on Anonymisation Techniques 12 (Apr. 10, 2014), https://www.ardiournals.com/docs/88197.pdf [https://perma.cc/A2LS-6NXE].

253. Generalization includes “generalizing, or diluting, the attributes of data subjects by modifying the respective scale or order of magnitude.” Id. at 16.

254. For example, HIPPA states:

(1) Uses and disclosures to create de-identified information. A covered entity may use protected health information to create information that is not individually identifiable health information (2) Uses and disclosures of de-identified information. Health information that meets the standard and implementation specifications for de-identification under § 164.514(a) and (b) is considered not to be individually identifiable health information, i.e., de-identified.
anonymous. Professor Ohm, a leading data-privacy scholar, analyzed three cases where anonymization failed and found:

Even though administrators had removed any data fields they thought might uniquely identify individuals, researchers . . . unlocked identity by discovering pockets of surprising uniqueness remaining in the data. Just as human fingerprints left at a crime scene can uniquely identify a single person and link that person with “anonymous” information, so too do data subjects generate “data fingerprints”—combinations of values of data shared by nobody else in their table.255

The proposed Online Privacy Act of 2019 addresses these re-identification concerns but did not take an aggressive stance on mandatory anonymization.256 It only required anonymization where efforts to do so are “reasonable,”257 a condition that may preclude anonymization of massive amounts of smart meter data,258 not just when it is not “an unreasonable amount of effort.”259

Regulating Data Ownership. A last option would be the regulation of data ownership, its use, and its distribution.260 Generally, utility-company customers have a right to access the data, but there are varying views on whether third parties can access this data,261 as well as who owns the data.262 Congress has already begun to address these complicated issues, including allowing interested persons access to nonspecific utility-customer information.263

255. Ohm, supra note 228, at 1723.
257. Id. § 201(d) (“In cases in which personal information can be replaced with...personal information that has been de-identified, or the random personal information of a one or more individuals without substantially reducing the utility of the data or requiring an unreasonable amount of effort, such a replacement shall take place.”).
262. Id. at 379-95.
263. See Federal Smart Metering Law of 2005, 16 U.S.C. § 2621 (2018) (“Purchasers shall be able to access their own information at any time through the Internet and on other means of communication elected by that utility for Smart Grid applications. Other interested persons shall be able to access information not specific to any purchaser through the Internet. Information specific to any
Artificial Intelligence and Climate Change

Colorado is one of the few states that explicitly regulate the distribution of smart-meter data. And in Massachusetts, an order regarding a smart-meter proposal even considered distributing ownership rights between the customer and the utility based on who collected the data. Moreover, the Green Button initiative, mentioned above, also encourages utilities to “provide utility customers with easy and secure access to their energy usage information in a consumer-friendly and computer-friendly format for electricity, natural gas, and water usage.” The initiative allows utility customers to access their data, with the option to share the data if they choose.

AI algorithms use data to make important public-policy decisions every day, thus most scholars agree some degree of regulation is warranted. Professor Solow-Niederman goes one step past regulation of data in arguing instead that we should be regulating AI algorithms, but she acknowledges that administrative law will have to adapt if we are to effectively regulate them. AI’s speed, complexity, and uncertainty would make standard prescriptive regulations difficult to enforce. While public policy might eventually demand regulation of AI algorithms, that will take time; a good start would be to explicitly regulate the ownership of the data used in the algorithm to ensure AI applications are being developed with the public interest in mind.

264. 4 COLO. CODE REGS. § 723-3:3029 (LexisNexis 2016); see also Electric Usage Data Protection Act, OKLA. STAT. ANN. tit. 17, §§ 710.1-8 (primarily regulating customer access to data with a few exceptions for third-party access to data in emergency situations).
265. In re Elec. Distribution Cos., No. DTE 01-28, 2001 WL 1149629 (Mass. D.T.E. May 18, 2001); see also Payne, supra note 231, at 376 (“A Massachusetts decision seems to indicate that there may be a difference in ownership rights depending on who collects the data, either the utility or the consumer.”).
270. Solow-Niederman, supra note 268 (manuscript at 40-50).
271. Professor Solow-Niederman suggests utilizing markets and norms to govern AI codes. Id.
C. Investment and Procurement

A key policy tool for facilitating the use of more AI for climate issues is funding. This Section addresses potential funding constraints for three source categories: private regulated utilities, private nonutilities, and public entities.

1. Utility Investing in Artificial Intelligence

Regulated utilities, comprising one-third of our country, will experience unique challenges associated with implementing AI. Regulated utilities’ investments are approved by state public utility commissions (PUCs) through ratemaking requests. Such PUCs are often skeptical of emerging new technologies, often bound to only approve the least-cost alternative, and utilities are only provided a rate of return for capital investments, not operating costs. This raises problems for utilities seeking to use more AI on three fronts: emerging technologies, cost, and accounting classification of AI investments.

Emerging Technologies. If AI has the potential to serve as a cost-effective diagnostic tool for the electric industry to reduce GHGs, why aren’t all the utilities jumping on board? One answer may lie in the difficulties of obtaining cost recovery for emerging technologies. Decisions about cost recovery for utility investments, including emerging technologies, are made by state PUCs. Given how many utilities need to obtain regulatory approvals of their expenditures to obtain cost recovery, a critical factor in the advancement of AI to enhance efficiencies across the electricity sector is the regulatory treatment of emerging technologies.

Emerging technologies are those that have not been readily proven, and change with the times. Nuclear plants were once considered emerging technologies, as were combined-cycle natural-gas plants. The last decade’s

274. See, e.g., Jonas J. Monast & Sarah K. Adair, Completing the Energy Innovation Cycle: The View from the Public Utility Commission, 65 HASTINGS L.J. 1345, 1360 (2014) (“It is challenging for early applications of innovative technologies to strictly meet the least cost standard, especially in the current era of large capital investment needs, declining sales growth, and the resulting upward pressure on electricity rates.”). Of course, there may also be other explanations, including a general apathy toward change, skepticism about the cost effectiveness of AI or its tangible benefits, and others. This Article merely raises one of many potential obstacles.

Emerging technologies du jour in the electricity sector have included renewable energy,276 smart meters, and energy storage, with varying successes for cost recovery.277

Emerging technologies present many business and financial opportunities, but the lack of information relating to these technologies can lead to feelings of trepidation for both regulators and investors.278 Utilities may have difficulty justifying investment in power-grid infrastructure to regulators without proof of recouping those costs.279 Furthermore, many of the value propositions of these emerging technologies involve avoided costs or long-term savings that are hard to quantify. In addition to PUC hesitancy, investors may similarly view such uncertainties as unfavorable in their return-on-investment forecasts.

Efforts to support such emerging technologies are further hindered by examples of technologies that were approved and failed to meet their potential. Such failures can cost customers millions of dollars, as did Duke Energy’s failed attempts to update and build two nuclear plants, costing ratepayers more than $3 billion.280 Relatedly, an approval of a nuclear repair project in Southern California went awry and cost ratepayers $3.3 billion dollars.281 Even if the project is not an outright failure, a perceived lack of success by ratepayers can be almost as damaging as a complete failure.282 Such failures tend to remain fresh on the mind and can be damning for subsequent emerging technologies.

278. Id.

281. Penn, supra note 280 (discussing a steam generator replacement at a nuclear plant that led to radiation leakage).

Although AI technologies will sometimes suffer the same fate as these other emerging technologies, there are a few strategies that could help immunize these investments. First, many of the hardware and software cost components could be characterized as more mundane capital costs. Rarely would a line-item present itself as “AI”, but rather as the more innocuous computer-related costs. Second, utilities sometimes insulate themselves from the riskiness of emerging technologies by charging customers in advance.283 Third, state legislatures could mandate the use of AI, shielding the PUC from bearing the brunt of the investment risk. Some states have taken this approach to smart meters by mandating their use,284 contributing to reports that utility investment in smart meters has more than doubled over the past decade.285

\textit{Cost.} Emerging technologies often take a double hit, as they are not only often viewed as riskier, but they are also often more expensive than incumbent technologies that have had years to work on efficiency improvements.286 These additional costs can come in the form of novel research, design, testing, and manufacturing.287 For new companies, economic factors such as economies of scale also play a large role in raising costs.288 And these costs can indeed be

\begin{footnotesize}
\begin{enumerate}
\item See 66 PA. STAT. AND CONS. STAT. ANN. § 2807(f) (West 2020); see also 220 ILL. COMP. STAT. ANN. 5/16-124 (2020) (“An electric utility shall not require a residential or small commercial retail customer to take additional metering . . . unless the Commission finds . . . that additional metering or metering capability is required to meet reliability requirements.”); P.R. LAWS ANN. tit. 22, § 817 (stating that Puerto Rico’s utility companies “shall initiate programs to study the feasibility and promote the use of smart meters . . . aimed at achieving the efficient and rational use of electric power”); Daniel Shea & Kate Bell, \textit{Smart Meter Opt-Out Policies}, NAT’L CONF. ST. LEGISLATORS (Aug. 20, 2019), https://www.ncsl.org/research/energy/smart-meter-opt-out-policies.aspx [https://perma.cc/69WD-4UTZ]. PUCs also mandate smart meters. See Hawkins v. Commonwealth Edison Co., 28 N.E.3d 869, 871 (Ill. App. 2015) (suit against the Illinois utility for failing to implement smart meters in violation of an order from the Illinois Commerce Commission).
\item See \textit{GREEN ENERGY: TECHNOLOGY, ECONOMICS AND POLICY} 230 (U. Aswathanarayana, Tulsi S. Harikrishnan & Thayyib S. Kadher-Mohien eds., 2010) (noting new energy technologies are generally more expensive than incumbent technologies).
\end{enumerate}
\end{footnotesize}
Artificial Intelligence and Climate Change

exorbitant. For example, one study found that new medical technologies raised hospital expenses by twenty-five percent within a period of only six years.289

Renewable technologies provide yet another example. For years, solar-energy generation was significantly more expensive than conventional energy sources like natural gas.290 At least a portion of that cost is caused by the fact that as an emerging technology, solar power lacked the infrastructure needed to make it compete significantly with conventional gas.291 But the high demand for solar energy in recent years has driven down prices to the point where they are now on par with conventional energy generation.292 The cost of wind power, and especially onshore wind power, also now rivals that of fossil fuels.293

Similarly, there may be a steep investment curve associated with the use of AI. Using AI may require new hardware and software, cloud costs, energy and data center costs, training costs, system and business-process integration costs, and manpower.294 And as researchers work to gather, clean, and use data, it may be quite expensive to train electricity-sector models to perform as desired.295 As with other emerging technologies, it may be important to develop a return-on-investment strategy that takes into account some of the difficult-to-quantify benefits of implementing AI in the electricity sector like enhanced efficiency, avoided costs, reduced manpower, and improved accuracy in results.296

Accounting for Capital versus Operating Costs. A last reason that utilities may not be fully realizing AI’s benefits may be related to its accounting classification. Regulated utilities earn a healthy rate of return on their capital investments. As has been noted frequently, this can provide them with a perverse incentive to invest in new construction (e.g., natural gas plants) as

291. Id.
293. Id.
296. Shacklett, supra note 294.
opposed to investments that could reduce our energy consumption (e.g., energy efficiency).\(^{297}\)

A similar counterintuitive result can occur with AI. Most studies have shown that using commercial cloud computing can have cost savings for a business over internally managing data.\(^{298}\) Yet utilities have historically been wary of adopting certain emerging technologies such as cloud computing because of the lack of financial incentives to adopt these technologies. Cost recovery for capital expenditures encourages utilities to continue investing in capital investments.\(^{299}\) Yet users of commercial cloud computing often pay monthly for such services,\(^{300}\) constituting “operating expenses” in the regulated utility world. Unlike capital expenses, operating expenses are not typically available for cost recovery.\(^{301}\) This accounting classification results in some utilities instead opting to run their data management onsite internally, a suboptimal result.\(^{302}\)

In an effort to eliminate the financial incentive to use the less cost-effective internal data management service, in 2016, the National Association of Regulatory Utility Commissioners (NARUC) issued a resolution to instead reconsider the accounting treatment of external cloud computing: “RESOLVED, That NARUC encourages State regulators to consider whether

\[\text{298. See Zach Lanich, The Benefits of Moving to the Cloud, FORBES (May 19, 2017), https://www.forbes.com/sites/forbestechcouncil/2017/05/19/the-benefits-of-moving-to-the-cloud/#6c4aa2c44733 [https://perma.cc/8ZT5-GUBT] (“Cloud services allow you to pay for the resource usage you need while taking advantage of scale and reliability, two things that most companies can’t afford internally. And there’s no need to update software internally since this is handled automatically.”). An Illinois Commerce Commissioner has noted that incentivizing investments in cloud computing “has beneficial environmental impacts, such as reducing a utility’s carbon footprint and energy usage and encouraging dematerialization. By removing carbon emitting on-site computing solutions and migrating to cloud services, which is also increasingly powered by renewable resources, we further our State’s carbon emission reduction goals.” Initiating Proposed Rulemaking Relating to the Regulatory Accounting Treatment of Cloud-Based Solutions, No. 170855, at 3 (Ill. Commerce Comm’n July 16, 2020) (dissenting opinion to final order), https://icc.illinois.gov/docket/P2017-0855/documents/301395/files/525481.pdf [https://perma.cc/M3CJ-FE85].}\]

\[\text{299. Jill Fehlowitz, Utilities Opt to Use Cloud-Based Analytics, Despite Lack of Monetary Incentives, UTIL. ANALYTICS (May 1, 2019), https://utilityanalytics.com/2019/05/utilities-opt-to-use-cloud-based-analytics-despite-lack-of-monetary-incentives [https://perma.cc/94LC-X2HX] (discussing the slow adoption of cloud services by some investor-owned utilities despite the lack of state or PUC action in assisting and encouraging the transition).}\]

\[\text{301. Id.}\]

cloud computing and on-premise solutions should receive similar regulatory accounting treatment, in that both would be eligible to earn a rate of return and would be paid for out of a utility’s capital budget.”

Two states, New York and Illinois, are paving the way to allow cost recovery for service-based emerging technologies. In New York, the NY Public Service Commission (PSC) approved utilities capitalizing prepaid contracts for software services. In essence, the PSC allowed the utility companies to prepay the total cost of the service contract and record it as a regulatory asset in the rate base. Illinois took a different approach. In January 2019, the Illinois Commerce Commission proposed to allow utility companies to prepay for cloud services. But the Commission was poised to allow some earnings on pay-as-you-go-services, where the utility pays based on its actual use of the service. On July 15, 2020, after three years of proceedings, the Illinois Commerce Commission issued a final rule declining to adopt the proposal “as it lacks necessary consumer protection mechanisms.” In a spirited dissent, two commissioners expressed disappointment in Illinois’s decision to stand “on the sidelines” rather than be a leader on this issue, noting the lost opportunity to provide regulatory certainty of treatment of these external cloud-computing services as regulatory assets, the lost environmental benefits, and the overblown concerns about consumer protection given these costs would still need to be reviewed for “ordinary prudence and reasonableness.”

Aside from these two states, there has not been widespread response to the NARUC resolution. Nevertheless, FERC has recognized the potential benefits of virtualization and cloud computing services in association with bulk electric system operations and has issued a Notice of Inquiry to take

305. Regulatory Accounting, supra note 300.

307. Id.

308. Regulatory Accounting, supra note 300. The pay-as-you-go model, unlike prepaid contracts, provides flexibility to utilities and lets them avoid paying for unused services. Girouard, supra note 306.

comments on their benefits and risks, as well as whether the Critical Infrastructure Protection Reliability Standards stand as an obstacle to their use. As such, states may want to more seriously consider such external cloud computing accounting options to truly reap AI’s benefits.

2. Nonutility Private Investment in Artificial Intelligence

Nonutilities include the rest of the private players in the electricity sector: merchant plants, universities, entrepreneurs, and clean-energy start-up companies. As just one example, an international group of researchers has formed an organization called “Climate Change AI.” The goals of Climate Change AI include facilitating work at the intersection of climate change and machine learning by encouraging the formation of cross-disciplinary teams and promoting discourse about best practices regarding the use of machine learning in climate-change domains. These private players may be more dependent on public-sector funding and grants for AI and climate. However, the latest wave of AI technology seems to have brought its own wave of funding. Investments in AI are booming with corporate and venture capital support. Some may have the backing of large activist corporate actors. According to Forbes magazine “in 2010 the average early-stage round for AI or machine learning startups was about $4.8 million. However, in 2017, total funding increased to $11.7 million[,] . . . and in 2018 AI investment hit an all-time high with over $9.3 billion raised by AI

312. CLIMATE CHANGE AI, https://www.climatechange.ai [https://perma.cc/KCD6-3T5X].
313. Id.
314. Utilities have the opportunity for cost recovery of new technologies without requiring the use of private fund, see supra Section III.C, whereas groups such as the National Science Foundation provide grants to “six research institutes in order to advance AI research and create national nexus points for universities, federal agencies, industries and nonprofits.” NSF Leads Federal Partners in Accelerating the Development of Transformational, AI-Powered Innovation, NAT’L SCI. FOUND. (Oct. 8, 2019), https://www.nsf.gov/news/news_summ.jsp?cntn_id=299329&org=NSF&from=news [https://perma.cc/J6SD-37SV].
Artificial Intelligence and Climate Change

companies. The largest investments in AI in the fourth quarter of 2018 ranged from $100 million to $400 million.

One example of largescale private funding of clean-energy AI projects is Breakthrough Energy Ventures (BEV). BEV is funded by billionaires such as Bill Gates, Jeff Bezos, and Michael Bloomberg. BEV invests in companies such as Kobold Metals, which uses AI to accelerate the search for ethical sources of metals needed for lithium-ion batteries. While funding may be an issue, especially for smaller players, a significant advantage of nonutility investment in AI is freedom, as these private players do not have to endure the same rate- and investment-approval process that utilities do.

3. Public Investment in Artificial Intelligence

In addition to private investment in AI for climate, public funding is imperative to its success. Governments at all levels can look for opportunities to invest in climate-related AI, as well as adjust government-procurement policies that could harness its benefits. For example, over the last few years, the EU government has been proactive in generating funding for AI-related projects. The U.S. government has also taken steps toward a more active role in AI use and development. Over the last ten years, the Department of Energy has invested billions of dollars into new energy infrastructure that interfaces with AI technology to improve energy efficiency. Public utilities

317. Walch, supra note 315.
320. St. John, supra note 316.
322. See supra Section III.C.
also are entering into deals with private companies to use their AI systems.326 Such governmental involvement might have big payoffs in AI’s future.327

\textit{D. Accountability, Safety, and Certification}

A last area of concern is accountability, safety, and certification. This involves at least two components. First, it demands caution to prevent entities from labeling everything as “AI” to qualify for funding, cost recovery, and general acceptance. Second, processes need to be in place to ensure that AI is performing as expected, which may demand more explainable AI. At present, it is extremely difficult to perform “quality control” on AI before we set it loose on the power grid as no one can fully predict how it will perform.328 Each of these concerns is addressed below.

\textit{Avoiding AI-Washing}. The first concern is that of “AI-washing.” Much like whitewashing329 and greenwashing,330 it is imperative that AI not be used as a catchall for all matters involving data processing. AI has been around since the 1950s, and yet it has come through its AI winter331 in full bloom. As AI has moved from relative obscurity to common parlance,332 it now carries a certain cache that many can use to their advantage.333 Some suggest that people use the

\footnotesize{326 For a good example, see the Salt River Project, a Phoenix-based public power utility, that signed a contract to adopt ScienceLogic’s SL1 platform to monitor all of its IT operations and applications. Maloney, supra note 156.

328. One approach may be to collect so much data that there are no “out of sample scenarios,” but until that point, it is difficult to know whether AI will not have an unintended result when it sees a condition for which it was not trained. Benjamin Cheatham et al., \textit{Confronting the Risks of Artificial Intelligence}, MCKINSEY & CO. (Apr. 26, 2019), https://www.mckinsey.com/business-functions/mckinsey-analytics/our-insights/confronting-the-risks-of-artificial-intelligence[https://perma.cc/24S6-C5VL].

331. “An AI winter is a point at which research, investment, and funding for AI goes into a period of decline and it’s hard to get funding for research or other projects” Kathleen Walch, \textit{Are We Heading for Another AI Winter Soon?}, FORBES (Oct. 20, 2019), https://www.forbes.com/sites/cognitiveworld/2019/10/20/are-we-heading-for-another-ai-winter-soon/#2e48964156d6 [https://perma.cc/P5TG-V4QZ].

332. \textit{See} id. (discussing the increase in interest in AI in the past decade).

333. \textit{See} id. (“[I]nvestment [in AI] is now quite diverse coming from enterprises, governments, academics, and venture capital Today, AI is being used all around the world to accomplish any number of tasks. We have put AI into cars, phones, advanced bots, and other technology that we use every day,”); \textit{What Are the Risks and Benefits of Artificial Intelligence?}, FORBES (Aug. 2,
Artificial Intelligence and Climate Change

term too generously, with some using it interchangeably with machine learning.334 Others suggest that data analytics can accomplish much of what some attribute to AI.335 Erroneously categorizing activities as AI could both minimize the legitimacy of actual AI applications and deny opportunities for actual and progressive AI advancements. Should entities label their activities as “AI” to qualify for certain advantages, AI could become a watered-down term. And should entities try to squeeze their activities into an “AI” box when that designation is questionable, it could cast doubt on valid AI.

One solution to this concern may be to elicit the assistance of the Federal Trade Commission (FTC). This federal agency is charged with “[p]rotecting consumers and competition by preventing anticompetitive, deceptive, and unfair business practices through law enforcement, advocacy, and education without unduly burdening legitimate business activity.”336 The FTC could pursue false or misleading AI claims,337 issue guidance informing companies on how to avoid misleading labeling,338 and require support from those claiming to use AI. The FTC has already begun to consider regulations preventing bias in algorithms339 and has regulated other areas where label misuse is common.340

Explainable AI. The second concern affects the actual legitimacy of the algorithm itself. If we are to base important policy decisions on the results of climate AI, it is imperative that there is trust in the system. This quest for explainable AI (XAI) is taking place across many dimensions, particularly

[334. As discussed earlier, machine learning is a subset of AI, not its equivalent. MJIMBA & SHANDA, supra note 56, at 9 (“Often, there is interchangeable use of these terms in daily language. However, the terms differ although refer to related things.”).]

[335. Reavie, supra note 36.]

those where civil rights and privacy are at issue.341 XAI is often defined as a machine-learning field that aims to address how an AI system makes decisions, wanting the system to produce transparent explanations and reasons for them.342 In short, it answers the “why?” question most humans ask to better understand decisions.

Although explainability is imperative where AI is making decisions that affect an individual’s freedom, explainability is important for electric-sector AI as well. As one national laboratory researcher stated, “we don’t know exactly how a neural network selects from the inputs and comes to the final decision because there is so much complicated processing to reach that decision.”343 Another researcher has suggested that “[t]he need for trials to validate reliability is a major reason [machine learning] and AI have seen little deployment” in the electric-power sector.344 For AI in energy and other climate sectors to gain public and private acceptance, its transparency will need to be enhanced, allowing those who rely on it to better understand why the algorithm reached the predictions it did, remain open to criticism, disclose unknowns, and allow for remediation of troublesome training data.

This Part does not suggest these are the only tradeoffs. In fact, given the space constraints of an Article, they barely scratch the surface of the depth of the issues that will need to be addressed to more thoroughly use AI to address climate challenges. But acknowledging and addressing the environmental, privacy, investment, and accountability implications of climate-related AI are a good starting place for further discussion.

Conclusion

Climate change continues to plague civilization. Despite an increasing awareness of the problem, humanity has yet to collectively take the drastic steps needed to curb our carbon emissions. As the world continues to eat away at the carbon budget set to keep us on course for a 1.5°C-degree warming of the Earth, we must continue to engage in a multifaceted strategy. AI needs to become part of that strategy. This Article only addresses one of the many sectors that require transformation, but similar analysis of the tradeoffs of AI’s

343. Trabish, supra note 6.

344. Id. Similarly, users will want to understand the consequences of AI, meaning it is important to “define the adjustable autonomy of such systems; to what extent should the agent automatically decide to shift devices to run at certain times, and when should it ask for confirmation from the user.” Ramchurn, supra note 98.
benefits and limitations could be had with respect to the agricultural, commercial, residential, and transportation sectors. It is imperative that the limitations of AI be acknowledged and tempered. Furthermore, recognizing AI’s limitations should not result in excluding its application where appropriate to help address the complicated data challenges associated with climate change. As a federal judge has noted, “[w]hat sets this harm apart from all others is not just its magnitude, but its irreversibility.”345 Climate change is too important not to try.

345 Juliana v. United States, 947 F.3d 1159, 1177 (9th Cir. 2020) (Staton, J., dissenting).